Geophysics
-
Published:October 08, 2019
Abstract
This article summarizes recent advances in our knowledge of the past 1000 years of earthquakes in the Himalaya using geodetic, historical and seismological data, and identifies segments of the Himalaya that remain unruptured. The width of the Main Himalayan Thrust is quantified along the arc, together with estimates for the bounding coordinates of historical rupture zones, convergence rates, rupture propagation directions as constrained by felt intensities. The 2018 slip potential for fifteen segments of the Himalaya are evaluated and potential magnitudes assessed for future earthquakes should these segments fail in isolation or as contiguous ruptures. Ten of these fifteen segments are sufficiently mature currently to host a great earthquake (Mw ≥ 8). Fatal Himalayan earthquakes have in the past occurred mostly in the daylight hours. The death toll from a future nocturnal earthquake in the Himalaya could possibly exceed 100 000 due to increased populations and the vulnerability of present-day construction methods.
Figures & Tables
Contents
Himalayan Tectonics: A Modern Synthesis
CONTAINS OPEN ACCESS
The Himalaya–Karakoram–Tibet mountain belt resulted from Cenozoic collision of India and Asia and is frequently used as the type example of a continental collision orogenic belt. The last quarter of a century has seen the publication of a remarkably detailed dataset relevant to the evolution of this belt. Detailed fieldwork backed up by state-of-the-art structural analysis, geochemistry, mineral chemistry, igneous and metamorphic petrology, isotope chemistry, sedimentology and geophysics produced a wide-ranging archive of data-rich scientific papers. The rationale for this book is to provide a coherent overview of these datasets in addressing the evolution of the mountain ranges we see today.
This volume comprises 21 specially invited review papers on the Himalaya, Kohistan arc, Tibet, the Karakoram and Pamir ranges. These papers span the history of Himalayan research, chronology of the collision, stratigraphy, magmatic and metamorphic processes, structural geology and tectonics, seismicity, geophysics, and the evolution of the Indian monsoon. This landmark set of papers should underpin the next 25 years of Himalayan research.