Himalayan Tectonics: A Modern Synthesis
CONTAINS OPEN ACCESS
The Himalaya–Karakoram–Tibet mountain belt resulted from Cenozoic collision of India and Asia and is frequently used as the type example of a continental collision orogenic belt. The last quarter of a century has seen the publication of a remarkably detailed dataset relevant to the evolution of this belt. Detailed fieldwork backed up by state-of-the-art structural analysis, geochemistry, mineral chemistry, igneous and metamorphic petrology, isotope chemistry, sedimentology and geophysics produced a wide-ranging archive of data-rich scientific papers. The rationale for this book is to provide a coherent overview of these datasets in addressing the evolution of the mountain ranges we see today.
This volume comprises 21 specially invited review papers on the Himalaya, Kohistan arc, Tibet, the Karakoram and Pamir ranges. These papers span the history of Himalayan research, chronology of the collision, stratigraphy, magmatic and metamorphic processes, structural geology and tectonics, seismicity, geophysics, and the evolution of the Indian monsoon. This landmark set of papers should underpin the next 25 years of Himalayan research.
The South Tibetan Detachment System: history, advances, definition and future directions
-
Published:October 08, 2019
Abstract
Recognition and subsequent study of the syn-convergent low-angle normal faults and shear zones – the South Tibetan Detachment System (STDS) – that form the upper boundary of the Himalayan mid-crust fundamentally changed views of how the Himalayan orogenic system developed. This paper reviews the past four decades of discovery and major advances in our understanding of the detachment system. Significantly conflicting maps of the fault trace, as well as proposed extensions of the detachment system up to hundreds of kilometres both up and down dip of the main fault trace, call for a unifying definition of the detachment system based on structural criteria. The different proposed models for the formation of the STDS during tectonic evolution of the Himalayan orogen are compared. Finally, critical outstanding questions about the origin, extent and character of the detachment system are identified and point to future directions for research.