Crustal Architecture and Evolution of the Himalaya–Karakoram–Tibet Orogen
CONTAINS OPEN ACCESS
This volume comprises 17 contributions that address the architecture and geodynamic evolution of the Himalaya–Karakoram–Tibet (HKT) system, covering wide aspects, from the active seismicity of the present day to the remnants of the Proterozoic orogen. The articles investigate the HKT system at different scales, blending field research with laboratory studies. The role of various lithospheric components and their inheritance in the geodynamic and magmatic evolution of the HKT system through time, and their links to global geological events, are studied in the field. The laboratory research focuses on the (sub-)micrometre scale, detailing micro-structural geology, crystal chemistry, geochronology, and the study of circulating fluids, their preservation (trapped in fluid inclusions) and their evolution, distribution, migration and interaction with the solid host. An orogen over 2000 km long can be understood only if the processes at the nanometre and micrometre scales are taken into account. The contributions in this volume successfully combine these scales to enhance our understanding of the HKT system.
Influence of inherited Indian basement faults on the evolution of the Himalayan Orogen
-
Published:September 25, 2019
-
CiteCitation
Laurent Godin, Renaud Soucy La Roche, Lindsay Waffle, Lyal B. Harris, 2019. "Influence of inherited Indian basement faults on the evolution of the Himalayan Orogen", Crustal Architecture and Evolution of the Himalaya–Karakoram–Tibet Orogen, Rajesh Sharma, Igor M. Villa, Santosh Kumar
Download citation file:
- Share
-
Tools
Abstract
Indian basement faults, which bound three orogen-perpendicular palaeotopographic ridges of Precambrian Indian basement south of the Himalaya, extend to the base of the Indian lithosphere and to the northern extent of the Indian lithosphere underneath Tibet. In the eastern Himalaya, the active orogen-perpendicular Yadong–Gulu graben is aligned with an earthquake-generating strike-slip fault in the high Himalaya. We argue that the graben results from crustal necking during reactivation of the underplated basement fault. In the central Himalaya, along-strike diachronous deformation and metamorphism within the Himalayan metamorphic core, as well as lateral ramps in the foreland thrust belt, spatially correspond to the Lucknow and Pokhara lineaments that bound the subsurface Faizabad Ridge in the Indian basement. Analogue centrifuge modelling confirms that offset along such deep-seated basement faults can affect the location, orientation and type of structures developed at various stages of orogenesis and suggests that it is mechanically feasible for strain to propagate through a melt-weakened mid-crust. We suggest that inherited Indian basement faults affect the ramp-flat geometry of the basal Main Himalayan Thrust, partition the Himalayan range into distinct zones, localize east–west extension resulting in the Tibetan graben and, ultimately, contribute to lateral variability in tectonic evolution along the orogen's strike.