Crustal Architecture and Evolution of the Himalaya–Karakoram–Tibet Orogen
CONTAINS OPEN ACCESS
This volume comprises 17 contributions that address the architecture and geodynamic evolution of the Himalaya–Karakoram–Tibet (HKT) system, covering wide aspects, from the active seismicity of the present day to the remnants of the Proterozoic orogen. The articles investigate the HKT system at different scales, blending field research with laboratory studies. The role of various lithospheric components and their inheritance in the geodynamic and magmatic evolution of the HKT system through time, and their links to global geological events, are studied in the field. The laboratory research focuses on the (sub-)micrometre scale, detailing micro-structural geology, crystal chemistry, geochronology, and the study of circulating fluids, their preservation (trapped in fluid inclusions) and their evolution, distribution, migration and interaction with the solid host. An orogen over 2000 km long can be understood only if the processes at the nanometre and micrometre scales are taken into account. The contributions in this volume successfully combine these scales to enhance our understanding of the HKT system.
Myrmekitic intergrowth of tourmaline and quartz in eclogite-hosting gneisses of the Tso Morari ultrahigh-pressure metamorphic terrane (Eastern Ladakh, India): a possible record of high-pressure conditions
-
Published:September 25, 2019
-
CiteCitation
Igor Broska, Peter Bačík, Santosh Kumar, Marian Janák, Sergiy Kurylo, Jan Filip, Jakub Bazarnik, Tomáš Mikuš, 2019. "Myrmekitic intergrowth of tourmaline and quartz in eclogite-hosting gneisses of the Tso Morari ultrahigh-pressure metamorphic terrane (Eastern Ladakh, India): a possible record of high-pressure conditions", Crustal Architecture and Evolution of the Himalaya–Karakoram–Tibet Orogen, Rajesh Sharma, Igor M. Villa, Santosh Kumar
Download citation file:
- Share
Abstract
Alkaline schorlitic tourmaline with domains of myrmekitic quartz and tourmaline intergrowths is reported for the first time from quartzo-feldspathic gneisses of the Tso Morari Crystalline Complex (TMCC), eastern Ladakh Himalaya. Except for schorlitic tourmaline, the brown-green dravitic tourmaline occurs in melanocratic layers of the gneiss. The schorlitic tourmaline contains REE-rich apatite, which is a typical mineral formed under high-pressure (HP) conditions. The observed myrmekite, marked by vermicular quartz and tourmaline intergrowths, was probably formed during decompression as a consequence of excess silica released from recrystallized tourmaline. The recalculated composition of the tourmaline with quartz myrmekite suggests that Si also occupied the tourmaline octahedral Z site during the HP regime. During decompression excess Si from this tourmaline was replaced by Mg and Fe3+. At an early stage of exhumation needle-shaped schorlitic tourmaline II and mosaic zoning were formed. The excess of silica and the structural disorder suggest that the Si-oversaturated tourmaline was stable at high-pressure–ultrahigh-pressure (HP–UHP) conditions. The greater stability of dravitic tourmaline compared to schorlitic tourmaline at HP conditions is evidently recorded at the TMCC. The tourmaline-bearing gneisses of the TMCC most probably shared the same metamorphic conditions during Tertiary collision of the Indian and Eurasian plates, similar to that observed for the associated UHP eclogites.
- Asia
- chemical composition
- crystal chemistry
- dravite
- eclogite
- framework silicates
- gneisses
- high pressure
- hydrothermal conditions
- India
- Indian Peninsula
- intergrowths
- Jammu and Kashmir
- Ladakh
- metamorphic rocks
- metamorphism
- myrmekite
- P-T conditions
- pressure
- quartz
- ring silicates
- schorl
- silica minerals
- silicates
- terranes
- tourmaline group
- ultrahigh pressure
- Tso Morari Complex