Crustal Architecture and Evolution of the Himalaya–Karakoram–Tibet Orogen
CONTAINS OPEN ACCESS
This volume comprises 17 contributions that address the architecture and geodynamic evolution of the Himalaya–Karakoram–Tibet (HKT) system, covering wide aspects, from the active seismicity of the present day to the remnants of the Proterozoic orogen. The articles investigate the HKT system at different scales, blending field research with laboratory studies. The role of various lithospheric components and their inheritance in the geodynamic and magmatic evolution of the HKT system through time, and their links to global geological events, are studied in the field. The laboratory research focuses on the (sub-)micrometre scale, detailing micro-structural geology, crystal chemistry, geochronology, and the study of circulating fluids, their preservation (trapped in fluid inclusions) and their evolution, distribution, migration and interaction with the solid host. An orogen over 2000 km long can be understood only if the processes at the nanometre and micrometre scales are taken into account. The contributions in this volume successfully combine these scales to enhance our understanding of the HKT system.
Structural and thermochronological studies of the Almora klippe, Kumaun, NW India: implications for crustal thickening and exhumation of the NW Himalaya
-
Published:September 25, 2019
-
CiteCitation
M. K. Puniya, R. C. Patel, P. D. Pant, 2019. "Structural and thermochronological studies of the Almora klippe, Kumaun, NW India: implications for crustal thickening and exhumation of the NW Himalaya", Crustal Architecture and Evolution of the Himalaya–Karakoram–Tibet Orogen, Rajesh Sharma, Igor M. Villa, Santosh Kumar
Download citation file:
- Share
Abstract
Crystalline klippen over the Lesser Himalayan Metasedimentary Sequence (LHMS) zone in the NW Himalaya have specific syn- and post-emplacement histories. These tectonics also provide a means to understand the driving factors responsible for the exhumation of the rocks of crystalline klippen during the Himalayan Orogeny. New meso- and microscale structural analyses, and thermochronological studies across the LHMS zone, Ramgarh Thrust (RT) sheet and Almora klippe in the eastern Kumaun region, NW Himalaya, indicate that the RT sheet and Almora klippe were a part of the Higher Himalayan Crystalline (HHC) of the Indian Plate which underwent at least one episode of pre-Himalayan deformation and polyepisodic Himalayan deformation in ductile and brittle–ductile regimes. The deformation temperature pattern within the Almora klippe records a normal thermal profile from its base to top but an inverted thermal profile from the base of Almora klippe down towards the LHMS zone. New fission-track data collected across the RT sheet and Almora klippe along Chalthi–Champawat–Pithoragarh traverse in the east Kumaun region document the exhumation of both units since Eocene times. Zircon fission-track (ZFT) ages from the Almora klippe range between 28.7 ± 2.4 and 17.6 ± 1.1 Ma, and from the RT sheet between 29.8 ± 1.6 and 22.6 ± 1.9 Ma; and the apatite fission-track (AFT) ages from the Almora klippe range between 15.1 ± 1.7 and 3.4 ± 0.5 Ma, and from the RT sheet between 8.7 ± 1.2 and 4.6 ± 0.6 Ma. The age pattern and diverse patterns of the exhumation rates reflect a clear tectonic signal in the RT sheet and the Almora klippe which acknowledge that the Cenozoic tectonics influenced the exhumation pattern in the Himalaya.