Skip to Main Content
Skip Nav Destination

Crystalline klippen over the Lesser Himalayan Metasedimentary Sequence (LHMS) zone in the NW Himalaya have specific syn- and post-emplacement histories. These tectonics also provide a means to understand the driving factors responsible for the exhumation of the rocks of crystalline klippen during the Himalayan Orogeny. New meso- and microscale structural analyses, and thermochronological studies across the LHMS zone, Ramgarh Thrust (RT) sheet and Almora klippe in the eastern Kumaun region, NW Himalaya, indicate that the RT sheet and Almora klippe were a part of the Higher Himalayan Crystalline (HHC) of the Indian Plate which underwent at least one episode of pre-Himalayan deformation and polyepisodic Himalayan deformation in ductile and brittle–ductile regimes. The deformation temperature pattern within the Almora klippe records a normal thermal profile from its base to top but an inverted thermal profile from the base of Almora klippe down towards the LHMS zone. New fission-track data collected across the RT sheet and Almora klippe along Chalthi–Champawat–Pithoragarh traverse in the east Kumaun region document the exhumation of both units since Eocene times. Zircon fission-track (ZFT) ages from the Almora klippe range between 28.7 ± 2.4 and 17.6 ± 1.1 Ma, and from the RT sheet between 29.8 ± 1.6 and 22.6 ± 1.9 Ma; and the apatite fission-track (AFT) ages from the Almora klippe range between 15.1 ± 1.7 and 3.4 ± 0.5 Ma, and from the RT sheet between 8.7 ± 1.2 and 4.6 ± 0.6 Ma. The age pattern and diverse patterns of the exhumation rates reflect a clear tectonic signal in the RT sheet and the Almora klippe which acknowledge that the Cenozoic tectonics influenced the exhumation pattern in the Himalaya.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal