P–T conditions of symplectite formation in the eclogites from the Western Gneiss Region (Norway)
-
Published:April 17, 2019
Abstract
Symplectite, defined as plagioclase + Ca-pyroxene (±amphibole) intergrowths after omphacite, and kelyphite, defined as amphibole + plagioclase coronas around garnet, are common features of retrogressed eclogites. These textures are related to exhumation under (ultra) high pressure towards the surface, but the estimation of the pressure–temperature (P–T) of symplectite formation is difficult because of the narrowness of pyroxene and plagioclase lamellas, and the compositional variability of the phases. Retrogressed eclogites from Norwegian localities with different eclogite peak conditions have been chosen to investigate the formation of symplectite and associated kelyphite. Thermobarometry calculations show that symplectite crystallizes as soon as the rocks enter the stability field of plagioclase and continues crystallizing until they have reached amphibolite facies. Symplectite yields a pressure range from 18 to 10 kbar, and a temperature range from 700 to 550°C. Amphibole found in the symplectite assemblage crystallizes later, at lower pressures and temperatures (10–4 kbar, 680–420°C). Kelyphite is always associated with well-developed symplectite, when the former omphacite is totally transformed into symplectite. These features likely testify to the influence of an external fluid during retrogression. Samples with limited symplectite and no kelyphite are likely retrogressed with an internal fluid.
Figures & Tables
Contents
Metamorphic Geology: Microscale to Mountain Belts
CONTAINS OPEN ACCESS
In Earth evolution, mountain belts are the loci of crustal growth, reworking and recycling. These crustal-scale processes are unravelled through microscale investigations of textures and mineral assemblages of metamorphic rocks. Multiple episodes of metamorphism, re-equilibration and deformation, however, generally produce a complex and tightly interwoven pattern of microstructures and assemblages. Over the last two decades, the combination of advanced computing and technological capabilities with new concepts has provided a vast array of novel petrological tools and high-resolution/high-sensitivity techniques for microanalysis and imaging. Such novel approaches are proving fundamental to untangling the enigma represented by metamorphism with an unprecedented level of detail and confidence. As a result, the first decade and a half of this century has already seen the tumultuous development of new research avenues in metamorphic petrology. This book aims to provide a timely overview of the state of the art of this field, of newly developed petrological techniques, future advancements and significant new case studies.