Processes
-
Published:April 17, 2019
Abstract
A key aim of modern metamorphic geochronology is to constrain precise and accurate rates and timescales of tectonic processes. One promising approach in amphibolite and granulite-facies rocks links the geochronological information recorded in zoned accessory phases such as monazite to the pressure–temperature information recorded in zoned major rock-forming minerals such as garnet. Both phases incorporate rare earth elements (REE) as they crystallize and their equilibrium partitioning behaviour potentially provides a useful way of linking time to temperature. We report REE data from sub-solidus amphibolite-facies metapelites from Bhutan, where overlapping ages, inclusion relationships and Gd/Lu ratios suggest that garnet and monazite co-crystallized. The garnet–monazite REE relationships in these samples show a steeper pattern across the heavy (H)REE than previously reported. The difference between our dataset and the previously reported data may be due to a temperature-dependence on the partition coefficients, disequilibrium in either dataset, differences in monazite chemistry or the presence or absence of a third phase that competed for the available REE during growth. We urge caution against using empirically-derived partition coefficients from natural samples as evidence for, or against, equilibrium of REE-bearing phases until monazite–garnet partitioning behaviour is better constrained.
Figures & Tables
Contents
Metamorphic Geology: Microscale to Mountain Belts
CONTAINS OPEN ACCESS
In Earth evolution, mountain belts are the loci of crustal growth, reworking and recycling. These crustal-scale processes are unravelled through microscale investigations of textures and mineral assemblages of metamorphic rocks. Multiple episodes of metamorphism, re-equilibration and deformation, however, generally produce a complex and tightly interwoven pattern of microstructures and assemblages. Over the last two decades, the combination of advanced computing and technological capabilities with new concepts has provided a vast array of novel petrological tools and high-resolution/high-sensitivity techniques for microanalysis and imaging. Such novel approaches are proving fundamental to untangling the enigma represented by metamorphism with an unprecedented level of detail and confidence. As a result, the first decade and a half of this century has already seen the tumultuous development of new research avenues in metamorphic petrology. This book aims to provide a timely overview of the state of the art of this field, of newly developed petrological techniques, future advancements and significant new case studies.