Skip to Main Content


Displacement waves (or tsunamis) generated by sub-aerial landslides cause damage along shorelines over long distances, making run-up assessment a crucial component of landslide risk analysis. Although site-specific modelling provides important insight into the behaviour of potential waves, more general approaches using limited input parameters are necessary for preliminary assessments. We use a catalogue of landslide-generated displacement waves to develop semi-empirical relationships linking displacement wave run-up (R in metres) to distance from landslide impact (x in kilometres) and to landslide volume (V in millions of cubic metres). For individual events, run-up decreases with distance according to power laws. Consideration of ten events demonstrates that run-up increases with landslide volume, also according to a power law. Combining these relationships gives the SPLASH equation: R = aVbxc, with best-fitted parameters a = 18.093, b = 0.57110 and c = −0.74189. The 95% prediction interval between the calculated and measured run-up values is 2.58, meaning that 5% of the measured run-up heights exceed the predicted value by a factor of 2.58 or more. This relatively large error is explained by local amplifications of wave height and run-up. Comparisons with other displacement wave models show that the SPLASH equation is a valuable tool for the first-stage preliminary hazard and risk assessment for unstable rock slopes above water bodies.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal