Subaqueous Mass Movements and their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides
CONTAINS OPEN ACCESS
The challenges facing submarine mass movement researchers and engineers are plentiful and exciting. This book follows several high-profile submarine landslide disasters that have reached the world's attention over the past few years. For decades, researchers have been mapping the world's mass movements. Their significant impacts on the Earth by distributing sediment on phenomenal scales is undeniable. Their importance in the origins of buried resources has long been understood. Their hazard potential ranges from damaging to apocalyptic, frequently damaging local infrastructure and sometimes devastating whole coastlines. Moving beyond mapping advances, the subaqueous mass movement scientists and practitioners are now also focussed on assessing the consequences of mass movements, and the measurement and modelling of events, hazard analysis and mitigation. Many state-of-the-art examples are provided in this book, which is produced under the auspices of the United Nations Educational, Scientific and Cultural Organisation Program S4SLIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs).
Surficial sediment failures due to the 1929 Grand Banks Earthquake, St Pierre Slope Available to Purchase
-
Published:September 30, 2019
- OpenGeoSci
-
Tools
- View This Citation
- Add to Citation Manager for
CitationIrena Schulten, David C. Mosher, Sebastian Krastel, David J. W. Piper, Markus Kienast, 2019. "Surficial sediment failures due to the 1929 Grand Banks Earthquake, St Pierre Slope", Subaqueous Mass Movements and their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides, D.G. Lintern, D.C. Mosher, L.G. Moscardelli, P.T. Bobrowsky, C. Campbell, J. Chaytor, J. Clague, A. Georgiopoulou, P. Lajeunesse, A. Normandeau, D. Piper, M. Scherwath, C. Stacey, D. Turmel
Download citation file:
Abstract
A Mw 7.2 earthquake centred beneath the upper Laurentian Fan of the SW Newfoundland continental slope triggered a damaging turbidity current and tsunami on 18 November 1929. The turbidity current broke telecommunication cables, and the tsunami killed 28 people and caused major infrastructure damage along the south coast of Newfoundland. Both events are believed to have been derived from sediment mass failure as a result of the earthquake. This study aims to identify the volume and kinematics of the 1929 slope failure in order to understand the geohazard potential of this style of sediment failure. Ultra-high-resolution seismic reflection and multibeam swath bathymetry data are used to determine: (1) the dimension of the failure area; (2) the thickness and volume of failed sediment; (3) fault patterns and displacements; and (4) styles of sediment failure. The total failure area at St Pierre Slope is estimated to be 5200 km2, recognized by escarpments, debris fields and eroded zones on the seafloor. Escarpments are typically 20–100 m high, suggesting failed sediment consisted of this uppermost portion of the sediment column. Landslide deposits consist mostly of debris flows with evidence of translational, retrogressive sliding in deeper water (>1700 m) and evidence of instantaneous sediment failure along fault scarps in shallower water (730–1300 m). Two failure mechanisms therefore seem to be involved in the 1929 submarine landslide: faulting and translation. The main surficial sediment failure concentrated along the deep-water escarpments consisted of widely distributed, translational, retrogressive failure that liquefied to become a debris flow and rapidly evolved into a massive channelized turbidity current. Although most of the surficial failures occurred at these deeper head scarps, their deep-water location and retrogressive nature make them an unlikely main contributor to the tsunami generation. The localized fault scarps in shallower water are a more likely candidate for the generation of the tsunami, but further research is needed in order to address the characteristics of these fault scarps.
- acoustical methods
- acoustical profiles
- earthquakes
- facies
- failures
- fault scarps
- faults
- geophysical methods
- geophysical profiles
- geophysical surveys
- Grand Banks earthquake 1929
- marine sediments
- mass movements
- morphology
- ocean floors
- precursors
- sediment budget
- sediments
- seismic methods
- seismic profiles
- seismic stratigraphy
- slope stability
- slumping
- surveys
- tsunamis
- uncertainty
- Saint Pierre Slope