Subaqueous Mass Movements and their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides
CONTAINS OPEN ACCESS
The challenges facing submarine mass movement researchers and engineers are plentiful and exciting. This book follows several high-profile submarine landslide disasters that have reached the world's attention over the past few years. For decades, researchers have been mapping the world's mass movements. Their significant impacts on the Earth by distributing sediment on phenomenal scales is undeniable. Their importance in the origins of buried resources has long been understood. Their hazard potential ranges from damaging to apocalyptic, frequently damaging local infrastructure and sometimes devastating whole coastlines. Moving beyond mapping advances, the subaqueous mass movement scientists and practitioners are now also focussed on assessing the consequences of mass movements, and the measurement and modelling of events, hazard analysis and mitigation. Many state-of-the-art examples are provided in this book, which is produced under the auspices of the United Nations Educational, Scientific and Cultural Organisation Program S4SLIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs).
Extending the terrestrial depositional record of marine geohazards in coastal NW British Columbia
-
Published:September 30, 2019
-
CiteCitation
David Huntley, Peter Bobrowsky, James Goff, Catherine Chagué, Douglas Stead, Davide Donati, Danial Mariampillai, 2019. "Extending the terrestrial depositional record of marine geohazards in coastal NW British Columbia", Subaqueous Mass Movements and their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides, D.G. Lintern, D.C. Mosher, L.G. Moscardelli, P.T. Bobrowsky, C. Campbell, J. Chaytor, J. Clague, A. Georgiopoulou, P. Lajeunesse, A. Normandeau, D. Piper, M. Scherwath, C. Stacey, D. Turmel
Download citation file:
- Share
-
Tools
Abstract
Recurrent storms, floods, landslides, earthquakes and tsunamis challenge the development of resilient infrastructure and communities in coastal northwestern British Columbia. Vulnerability assessment first requires extended and improved understanding of geohazards in the Pacific Basin to constrain modelling of future events. An investigation of soils and bedrock structures in the Douglas Channel provides insight into the distribution of deposits attributed to geohazards in the region. Newly discovered marine inundation deposits corroborate numerical models and suggest that Pacific-sourced storms and earthquake-triggered tsunamis expend much of their energy in the outer coast and rarely reach far up the mainland fjords. Small-volume Folisolic slides and rockfalls do not generate tsunamis of any consequence. In contrast, marine sediments deposited beyond storm berms at the fjord head are a record of local tsunamis generated by large-volume marine slumps. Deep-fractured bedrock mapped upslope from relict submarine features would trigger damaging tsunami waves if rapid failure into the fjord were to occur. The observations above suggest only great earthquakes, large landslides and seasonal storms above a certain threshold volume and impulse energy produce geomorphically significant inundation events. However, even small submarine landslides have tsunamigenic potential in Douglas Channel since they occur in shallow water.
- bathymetry
- British Columbia
- Canada
- climate change
- coastal environment
- depositional environment
- earthquakes
- fjords
- floods
- geologic hazards
- geomorphology
- glacial features
- infrastructure
- inlets
- landslides
- marine environment
- mass movements
- multibeam methods
- natural hazards
- Pacific Ocean
- peat
- remote sensing
- risk assessment
- sediments
- shore features
- slumping
- soils
- SRTM
- storms
- terrestrial environment
- tsunamis
- Western Canada
- Douglas Channel
- Kitimat River
- Hawkesbury Island
- Clio Bay
- Kitamaat British Columbia
- Drumlummon Bay
- Minette Bay