Subaqueous Mass Movements and their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides
CONTAINS OPEN ACCESS
The challenges facing submarine mass movement researchers and engineers are plentiful and exciting. This book follows several high-profile submarine landslide disasters that have reached the world's attention over the past few years. For decades, researchers have been mapping the world's mass movements. Their significant impacts on the Earth by distributing sediment on phenomenal scales is undeniable. Their importance in the origins of buried resources has long been understood. Their hazard potential ranges from damaging to apocalyptic, frequently damaging local infrastructure and sometimes devastating whole coastlines. Moving beyond mapping advances, the subaqueous mass movement scientists and practitioners are now also focussed on assessing the consequences of mass movements, and the measurement and modelling of events, hazard analysis and mitigation. Many state-of-the-art examples are provided in this book, which is produced under the auspices of the United Nations Educational, Scientific and Cultural Organisation Program S4SLIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs).
Giant mass-transport deposits in the southern Scotia Sea (Antarctica) Available to Purchase
-
Published:September 30, 2019
-
CiteCitation
Luis Somoza, Teresa Medialdea, Francisco J. González, 2019. "Giant mass-transport deposits in the southern Scotia Sea (Antarctica)", Subaqueous Mass Movements and their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides, D.G. Lintern, D.C. Mosher, L.G. Moscardelli, P.T. Bobrowsky, C. Campbell, J. Chaytor, J. Clague, A. Georgiopoulou, P. Lajeunesse, A. Normandeau, D. Piper, M. Scherwath, C. Stacey, D. Turmel
Download citation file:
- Share
Abstract
On the basis of 2D multichannel and very-high-resolution seismic data and swath bathymetry, we report a sequence of giant mass-transport deposits (MTDs) in the Scan Basin (southern Scotia Sea, Antarctica). MTDs with a maximum thickness of c. 300 m extend up to 50 km from the Discovery and Bruce banks towards the Scan Basin. The headwall area consists of multiple U-shaped scars intercalated between volcanic edifices, up to 250 m high and 7 km wide, extending c. 14 km downslope from 1750 to 2900 m water depth. Seismic sections show that these giant MTDs are triggered by the intersection between diagenetic fronts related to silica transformation and vertical fluid-flow pipes linked to magmatic sills emplaced within the sedimentary sequence of the Scan Basin. This work supports that the diagenetic alteration of siliceous sediments is a possible cause of slope instability along world continental margins where bottom-simulating reflectors related to silica diagenesis are present at a regional scale.
- alteration
- Antarctica
- bathymetry
- bottom features
- bottom-simulating reflectors
- continental margin
- deposition
- diagenesis
- fluid flow
- geophysical methods
- geophysical profiles
- geophysical surveys
- high-resolution methods
- intrusions
- mass movements
- multichannel methods
- ocean floors
- oceanography
- pipes
- Scotia Sea
- sediments
- seismic methods
- seismic profiles
- siliceous composition
- sills
- slope stability
- surveys
- Scan Basin