Articles
-
Published:January 01, 2019
Abstract
The Chuos Formation of Namibia is the sedimentary product of the Neoproterozoic Sturtian (c. 720–660 Ma) glaciation and contains massive diamictites intercalated with finely laminated iron formation. Similar Sturtian glacially associated iron formations are found globally. The iron formations are laminated and generally very pure. The diamictites are massive, contain abundant clasts and can be highly ferruginous. These two lithofacies are repeatedly interbedded with no facies transition. The iron formations preserve the rare earth element geochemistry of their contemporaneous seawater and contain rare Ce and Eu anomalies. The geochemistry does not implicate a hydrothermal influence. The Chuos iron formation is interpreted to have been deposited in an ice-proximal glacio-marine setting in a sub-ice shelf environment. Oxygenated fluids, such as sea ice brines and glacial meltwater, are invoked as a mechanism to precipitate iron oxides due to mixing with ferruginous seawater. The iron formation accumulates under an ice shelf with little clastic input. Episodic movement of the grounding line reworks the sediments into ferruginous diamict. Glaciogenic debris flows are intercalated with the iron formations. Palaeobathymetric depressions and accompanying brine pools increased the preservation potential of these iron formations. This model explains the relationship between glaciation and iron formation in the Neoproterozoic.
Supplementary material: The full set of geochemical data is available at https://doi.org/10.6084/m9.figshare.c.4031125.v1
Figures & Tables
Contents
Glaciated Margins: The Sedimentary and Geophysical Archive
CONTAINS OPEN ACCESS
Understanding the sedimentary and geophysical archive of glaciated margins is a complex task that requires integration and analysis of disparate sedimentological and geophysical data. Their analysis is vital for understanding the dynamics of past ice sheets and how they interact with their neighbouring marine basins, on timescales that cannot be captured by observations of the cryosphere today. As resources, sediments deposited on the inner margins of glaciated shelves also exhibit resource potential where more sand-dominated systems occur, acting as reservoirs for both hydrocarbons and water. This book surveys the full gamut of glaciated margins, from deep time (Neoproterozoic, Ordovician and Carboniferous–Permian) to modern high-latitude margins in Canada and Antarctica. This collection of papers is the first attempt to deliberately do this, allowing not only the similarities and differences between modern and ancient glaciated margins to be explored, but also the wide spectrum of their mechanisms of investigation to be probed. Together, these papers offer a high-resolution, spatially and temporally diverse blueprint of the depositional processes, ice sheet dynamics, and basin architectures of the world’s former glaciated margins; a vital resource in advancing understanding of our present and future marine-terminating ice sheet margins.