Introduction
-
Published:January 01, 2019
Abstract
A glaciated margin is a continental margin that has been occupied by a large ice mass, such that glacial processes and slope processes conspire to produce a thick sedimentary record. Ice masses take an active role in sculpting, redistributing and reorganizing the sediment that they erode on the continental shelf, and act as a supply route to large fan systems (e.g. trough mouth fans, submarine fans) on the continental slope and continental rise. To many researchers, the term ‘glaciated margin’ is synonymous with modern day areas fringing Antarctica and the Arctic shelf systems, yet the geological record contains ancient examples ranging in age from Precambrian to Cenozoic. In the pre-Pleistocene record, there is a tendency for the configuration of the tectonic plates to become increasingly obscure with age. For instance, in the Neoproterozoic record, not everyone agrees on the location of rift margins and some fundamental continental boundaries remain unclear. Given these issues, this introductory paper has two simple aims: (1) to provide a brief commentary of relevant Geological Society publications on glaciated margins, with the landmark papers highlighted and (2) to explain the contents of this volume.
Figures & Tables
Contents
Glaciated Margins: The Sedimentary and Geophysical Archive
CONTAINS OPEN ACCESS
Understanding the sedimentary and geophysical archive of glaciated margins is a complex task that requires integration and analysis of disparate sedimentological and geophysical data. Their analysis is vital for understanding the dynamics of past ice sheets and how they interact with their neighbouring marine basins, on timescales that cannot be captured by observations of the cryosphere today. As resources, sediments deposited on the inner margins of glaciated shelves also exhibit resource potential where more sand-dominated systems occur, acting as reservoirs for both hydrocarbons and water. This book surveys the full gamut of glaciated margins, from deep time (Neoproterozoic, Ordovician and Carboniferous–Permian) to modern high-latitude margins in Canada and Antarctica. This collection of papers is the first attempt to deliberately do this, allowing not only the similarities and differences between modern and ancient glaciated margins to be explored, but also the wide spectrum of their mechanisms of investigation to be probed. Together, these papers offer a high-resolution, spatially and temporally diverse blueprint of the depositional processes, ice sheet dynamics, and basin architectures of the world’s former glaciated margins; a vital resource in advancing understanding of our present and future marine-terminating ice sheet margins.