Skip to Main Content


What causes recurrent mass extinctions of life? We find that the ages of 10 of the 11 well-documented extinction episodes of the last 260 m.y. show correlations, at very high confidence (>99.99%), with the ages of the largest impact craters or the ages of massive continental flood-basalt eruptions. The four largest craters (≥100 km diameter, impact energies ≥3 × 107 Mt trinitrotoluene [TNT]) can be linked with recognized extinction events at 36, 66, 145, and 215 Ma, and with stratigraphic distal impact debris correlative with the extinctions. The ages of 7 out of 11 major flood-basalt episodes can be correlated with extinction events at 66, 94, ca. 120, 183, 201, 252, and 260 Ma. All seven flood-basalt–extinction co-events have coincident volcanogenic mercury anomalies in the stratigraphic record, closely linking the extinctions to the volcanism. Furthermore, the seven major periods of widespread anoxia in the oceans of the last 260 m.y. are significantly correlated (>99.99%) with the ages of the flood-basalt–extinction events, supporting a causal connection through volcanism-induced climate warming. Over Phanerozoic time (the last 541 m.y.), the six “major” mass extinctions (≥40% extinction of marine genera) are all correlated with the ages of flood-basalt episodes, and stratigraphically with related volcanogenic mercury anomalies. In only one case, the end of the Cretaceous (66 Ma), is there an apparent coincidence of a “major” mass-extinction event with both a very large crater (Chicxulub) and a continental flood-basalt eruption (the Deccan Traps).

The highly significant correlations indicate that extinction episodes are typically related to severe environmental crises produced by the largest impacts and by periods of flood-basalt volcanism. About 50% of the impacts of the past 260 m.y. seem to have occurred in clusters, supporting a picture of brief pulses of increased comet or asteroid flux. The largest craters tend to fall within these age clusters. Cross-wavelet transform analyses of the ages of impact craters and extinction events show a common, strong ~26 m.y. cycle, with the most recent phase of the cycle at ~12 Ma, correlating with a minor extinction event at 11.6 Ma.

The stream of life flows so slowly that the imagination fails to grasp the immensity of time required for its passage, but like many another stream it pulses irregularly as it flows. There are times of quickening, the expression points of evolution, which are almost invariably coincident with some great geologic change, and the correspondence so exact and so frequent that the laws of chance may not be invoked by way of explanation.

—Richard Swann Lull (Organic Evolution, New York, Macmillan, 1929, p. 693)

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal