Skip to Main Content
Book Chapter

Mass-balance modelling of Gangotri glacier

By
A. Agrawal
A. Agrawal
1
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
Search for other works by this author on:
R. J. Thayyen
R. J. Thayyen
2
National Institute of Hydrology, Roorkee, Uttarakhand, India
Search for other works by this author on:
A. P. Dimri
A. P. Dimri
1
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
Search for other works by this author on:
Published:
January 01, 2018

Abstract

The sensitivity of glacier mass balance (MB) in response to climatic perturbations has made it an important parameter of study from hydrological, climatological and glaciological point of view. To monitor the health of any glacier system, long-term MB observations are required. These observations among Himalayan glaciers are not available consistently and large glaciers are not often monitored for mass balance due to logistical challenges. One such glacier is the Gangotri, situated in the western Himalaya. In the present study an attempt is made to model the MB over the Gangotri glacier, the biggest glacier in the Ganga basin and also the point of origin of the River Ganges. The mass balance of the Gangotri glacier is estimated during the time period 1985–2014 using two different methods: ice-flow velocity; and energy balance modelling using regional model (REMO) outputs and in situ automatic weather station (AWS) data. The geodetic method is used for the nearby Dokriani glacier, where field-based MB measurements are available. MB of Gangotri glacier estimated for 2001–14 using the ice-flow velocity method is −0.92 ± 0.36 m w.e. a−1; for 2006–07, MB using AWS and Tropical Rainfall Monitoring Mission (TRMM) data with the energy balance modelling approach is −0.82 m w.e. a−1; and for 1985–2005, MB using REMO data with the energy balance modelling approach is −0.98 ± 0.23 m w.e. a−1. Using the surface velocity method, it is estimated that the glacier lost 9% of its volume during the period 2001–14. The glacier vacated an area of 0.152 km2 from the snout region, and retreated by 200 m in the last 14 years. MB values estimated for the Gangotri glacier from different methodologies are remarkably close, suggesting them to be suitable methods of MB estimation. TRMM, High Asia Refined (HAR-10) and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) data are used to estimate the precipitation over the glacier. The study suggests that the glacier-wide estimation of weather parameters needs to be improved for more accurate estimation of glacier mass balance.

Supplementary material: The snow-covered area, for months Jan-Dec, obtained for Gangotri glacier using Landsat data and NDSI (normalized differencing snow index) for year 2014 is available at https://doi.org/10.6084/m9.figshare.c.3888091

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

The Himalayan Cryosphere: Past and Present

N.C. Pant
N.C. Pant
University of Delhi, India
Search for other works by this author on:
R. Ravindra
R. Ravindra
National Centre for Antarctic and Ocean Research, India
Search for other works by this author on:
D. Srivastava
D. Srivastava
Geological Survey of India, India
Search for other works by this author on:
L.G. Thompson
L.G. Thompson
The Ohio State University, USA
Search for other works by this author on:
The Geological Society of London
Volume
462
ISBN electronic:
9781786203434
Publication date:
January 01, 2018

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal