Skip to Main Content
Book Chapter

Detrital zircon U-Pb and Lu-Hf analysis of Paleozoic sedimentary rocks from the Pearya terrane and Ellesmerian Fold Belt (northern Ellesmere Island): A comparison with Circum-Arctic datasets and their implications on terrane tectonics

By
Shawn J. Malone
Shawn J. Malone
Department of Geological Sciences, Ball State University, Muncie, Indiana 47306, USA
Search for other works by this author on:
William C. McClelland
William C. McClelland
Department of Earth and Environmental Sciences, University of Iowa, Iowa City, Iowa 52242, USA
Search for other works by this author on:
Werner von Gosen
Werner von Gosen
Geozentrum Nordbayern, Krustendynamik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, D-91054 Erlangen, Germany
Search for other works by this author on:
Karsten Piepjohn
Karsten Piepjohn
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Geologie der Energierohstoffe, Polargeologie, Stilleweg 2, D-30655 Hannover, Germany
Search for other works by this author on:
Publication history
02 May 201802 October 2018

ABSTRACT

Detrital zircon U-Pb and Hf isotopic data from Ordovician to Devonian– Carboniferous sedimentary rocks sampled from the Pearya terrane and adjacent areas, northern Ellesmere Island, record temporal variation in detrital zircon signature on the northeastern Arctic margin of Laurentia. Ordovician to Silurian clastic sediments deposited on the Pearya terrane record a provenance signal from before terrane accretion. This signal is dominated by Ordovician arc material and grains derived from recycling of Proterozoic metasedimentary and metaigneous basement. This pattern is similar to Neoproterozoic detrital zircon spectra from the Svalbard and East Greenland Caledonides, supporting the exotic nature of the Pearya terrane and links between Pearya and the Arctic Caledonides. Sedimentary rock deposited in the late Ordovician and early Silurian deep water basin of the Clements Markham fold belt likewise record a recycled source containing abundant early Neoproterozoic and Mesoproterozoic aged zircon. This contrasts with similarly aged units on Franklinian shelf, which contain much more abundant Paleoproterozoic zircon ages.

The provenance of the late Devonian–Carboniferous(?) Okse Bay Formation is dominated by sediment reworked from the units exposed in Pearya or the East Greenland Caledonides, with new sources derived from Paleoproterozoic domains of the Canadian-Greenland shield and late Devonian igneous rocks documented in Ellesmere and Axel Heiberg Islands, and Arctic Alaska. In contrast, detrital zircon age spectra from Devonian sedimentary rocks in the western Ellesmerian Clastic Wedge and northern Cordilleran clastic wedge of the Mackenzie Mountains contain abundant zircon grains yielding ages characteristic of the Caledonian and Timanian Orogens. This contrast suggests that the northeastern and northwestern sectors of the Paleozoic Laurentian Arctic margin received sediments from different terranes, with the northeast being dominated by reworked Caledonide terrane and Laurentian craton detritus, and the northwest likely receiving sediment from elements of Arctic Alaska–Chukotka. These detrital zircon data indicate that the Pearya terrane was isolated from northern Laurentia until after the late Silurian. The accretion of the Pearya terrane is constrained between the late Silurian and middle Devonian by stratigraphy, detrital zircon provenance shifts indicating a Laurentian cratonic source by the early Carboniferous, metamorphism in the orthogneiss basement observed between ca. 395 and 372 Ma, and the emplacement of the Cape Woods post-tectonic pluton at 390 Ma.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens

Geological Society of America
Volume
541
ISBN electronic:
9780813795416

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal