Skip to Main Content
Book Chapter

Numerical basin modeling of the Laptev Sea Rift, NE Russia

By
Christian Brandes
Christian Brandes
Institut für Geologie, Leibniz Universität Hannover, Callinstraße, 30167 Hannover, Germany
Search for other works by this author on:
Dieter Franke
Dieter Franke
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany
Search for other works by this author on:
Karsten Piepjohn
Karsten Piepjohn
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany
Search for other works by this author on:
Christoph Gaedicke
Christoph Gaedicke
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany
Search for other works by this author on:
Publication history
24 April 201828 September 2018

ABSTRACT

The Laptev Sea Rift in the East Siberian continental margin plays an important role in the geodynamic models for the opening of the Eurasia Basin. The active Gakkel Ridge, which also represents the boundary between the North America and Eurasia plates, abruptly meets the continental margin of the Laptev Sea. On the continental shelf in the prolongation of the Gakkel Ridge, a rift developed since the Late Cretaceous/Early Cenozoic with the formation of five roughly north-south trending depocenters. To better understand the evolution of this rift, a basin modeling study was carried out with PetroMod® software. The modeled sections used in this study were developed on the basis of depth-converted reflection seismic sections. The sections cover the Anisin Basin in the north and the southeastern margin of the Ust´ Lena Rift in the south. The numerical simulations are supported by tectonic and sedimentological field data that were collected in outcrops during the CASE 13 expedition to the New Siberian Islands in 2011. For the Anisin Basin different scenarios were modeled with rift onsets between 110 Ma and 66 Ma. The results show that the present-day temperature field in the area of the Anisin Basin and at the southeastern margin of the Ust´ Lena Rift is characterized by horizontal, seafloor-parallel isotherms. Geohistory curves extracted from the 2D simulations indicate a twofold rift evolution with a stronger initial subsidence in the Late Cretaceous to Early Paleogene and a moderate subsidence in Late Paleogene and Neogene times. Based on the modeling results, an early rift onset around 110 Ma seems to be more realistic than a later one around 66 Ma.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens

Geological Society of America
Volume
541
ISBN electronic:
9780813795416

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal