Skip to Main Content
Book Chapter

Comparing clay mineral diagenesis in interbedded sandstones and mudstones, Vienna Basin, Austria

By
Susanne Gier
Susanne Gier
Department of Geodynamics and Sedimentology, University of Vienna, 1090 Vienna, Austria
Search for other works by this author on:
Richard H. Worden
Richard H. Worden
Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L69 3GP, UK
Search for other works by this author on:
Peter Krois
Peter Krois
OMV Exploration and Production GmbH, 1020 Vienna, Austria
Search for other works by this author on:
Published:
January 01, 2018

Abstract:

There is no consensus about the rate and style of clay mineral diagenesis in progressively buried sandstones v. interbedded mudstones. The diagenetic evolution of interbedded Miocene sandstones and mudstones from the Vienna Basin (Austria) has therefore been compared using core-based studies, petrography, X-ray diffraction and X-ray fluorescence. There was a common provenance for the coarse- and fine-grained sediments, and the primary depositional environment of the host sediment had no direct effect on illitization. The sandstones are mostly lithic arkoses dominated by framework grains of quartz, altered feldspars and carbonate rock fragments. Sandstone porosity has been reduced by quartz overgrowths and calcite cement; their pore-filling authigenic clay minerals consist of mixed-layer illite–smectite, illite, kaolinite and chlorite. In sandstones, smectite illitization progresses with depth; at 2150 m there is a transition from randomly interstratified to regular interstratified illite–smectite. The overall mineralogy of mudstones is surprisingly similar to the sandstones. However, for a given depth, feldspars are more altered to kaolinite, and smectite illitization is more advanced in sandstones than in mudstones. The higher permeability of sandstones allowed faster movement of material and pore fluid necessary for illitization and feldspar alteration than in mudstones. The significance of this work is that it has shown that open-system diagenesis is important for some clay mineral diagenetic reactions in sandstones, while closed-system diagenesis seems to operate for clay mineral diagenesis in mudstones.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction

P. J. Armitage
P. J. Armitage
BP Upstream Technology, UK
Search for other works by this author on:
A. R. Butcher
A. R. Butcher
Geological Survey of Finland, Finland
Search for other works by this author on:
J.M. Churchill
J.M. Churchill
Shell UK Ltd, UK
Search for other works by this author on:
A.E. Csoma
A.E. Csoma
MOL Group Exploration, Hungary
Search for other works by this author on:
C. Hollis
C. Hollis
University of Manchester, UK
Search for other works by this author on:
R. H. Lander
R. H. Lander
Geocosm, USA
Search for other works by this author on:
J. E. Omma
J. E. Omma
Rocktype, UK
Search for other works by this author on:
R. H. Worden
R. H. Worden
University of Liverpool, UK
Search for other works by this author on:
The Geological Society of London
Volume
435
ISBN electronic:
9781786202901
Publication date:
January 01, 2018

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal