Skip to Main Content
Book Chapter

History of hydrothermal fluid flow in the midcontinent, USA: the relationship between inverted thermal structure, unconformities and porosity distribution

By
Bradley D. King
Bradley D. King
1
Department of Geology, Kansas Interdisciplinary Carbonates Consortium, The University of Kansas, 1475 Jayhawk Boulevard, Lawrence, KS 66045, USA
2
Present address: ConocoPhillips Company, 550 Westlake Park Boulevard, 12099 Two Westlake, Houston, TX 77079, USA
Search for other works by this author on:
Robert H. Goldstein
Robert H. Goldstein
1
Department of Geology, Kansas Interdisciplinary Carbonates Consortium, The University of Kansas, 1475 Jayhawk Boulevard, Lawrence, KS 66045, USA
Search for other works by this author on:
Published:
January 01, 2018

Abstract:

A comprehensive study of the Cambrian–Ordovician Arbuckle Group suggests that multiple fluid migration events have affected reservoir porosity via fractures and preferred stratigraphic horizons. Fluid inclusion homogenization temperatures from late-stage precipitates yield temperatures higher than can be explained by burial conditions or an elevated geothermal gradient. Fluid inclusion melting temperatures yield salinity values that indicate multiple fluids evolving through time. Hydrocarbon fluid inclusions in late-stage baroque dolomite suggest oil migration concurrent with hydrothermal fluid flow. Depleted δ13C and δ18O values provide evidence for a high-temperature basinal fluid source as well as for the preferential flow of hydrothermal fluids through permeable zones in the Mississippian and Arbuckle Group, where pore systems related to paleokarst are overlain by less permeable units. Radiogenic strontium isotopic data support fluid–rock interaction with siliciclastic material or basement rock at some point during the fluid migration history. Variable 87Sr/86Sr values suggest multiple sources for the fluids responsible for the cements and a transition from an advective fluid flow system to a vertical fluid flow system. The ancient aquifer system was vertically connected during migration of hydrothermal fluids, and a temperature-controlled vertical density gradient appears to have played an important role in late-stage porosity evolution, focusing the hottest fluids in the upper sections of permeable layers.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction

P. J. Armitage
P. J. Armitage
BP Upstream Technology, UK
Search for other works by this author on:
A. R. Butcher
A. R. Butcher
Geological Survey of Finland, Finland
Search for other works by this author on:
J.M. Churchill
J.M. Churchill
Shell UK Ltd, UK
Search for other works by this author on:
A.E. Csoma
A.E. Csoma
MOL Group Exploration, Hungary
Search for other works by this author on:
C. Hollis
C. Hollis
University of Manchester, UK
Search for other works by this author on:
R. H. Lander
R. H. Lander
Geocosm, USA
Search for other works by this author on:
J. E. Omma
J. E. Omma
Rocktype, UK
Search for other works by this author on:
R. H. Worden
R. H. Worden
University of Liverpool, UK
Search for other works by this author on:
The Geological Society of London
Volume
435
ISBN electronic:
9781786202901
Publication date:
January 01, 2018

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal