Skip to Main Content
Book Chapter

Deformation band development as a function of intrinsic host-rock properties in Triassic Sherwood Sandstone

By
Joshua Griffiths
Joshua Griffiths
1
School of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L69 3GP, UK
Search for other works by this author on:
Daniel R. Faulkner
Daniel R. Faulkner
1
School of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L69 3GP, UK
Search for other works by this author on:
Alexander P. Edwards
Alexander P. Edwards
2
Ikon Science, Teddington, Middlesex TW11 0JR, UK
Search for other works by this author on:
Richard H. Worden
Richard H. Worden
1
School of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L69 3GP, UK
Search for other works by this author on:
Published:
January 01, 2018

Abstract:

Deformation bands significantly alter the local petrophysical properties of sandstone reservoirs, although it is not known how the intrinsically variable characteristics of sandstones (e.g. grain size, sorting and mineralogy) influence the nature and distribution of deformation bands. To address this, cataclastic deformation bands within fine- and coarse-grained Triassic Sherwood Sandstone at Thurstaston, UK were analysed, for the first time, using a suite of petrographical techniques, outcrop studies, helium porosimetry and image analysis. Deformation bands are more abundant in the coarse-grained sandstone than in the underlying fine-grained sandstone. North- and south-dipping conjugate sets of cataclastic bands in the coarse-grained sandstone broadly increase in density (defined by number/m2) when approaching faults. Microstructural analysis revealed that primary grain size controls deformation band density. Deformation bands in both coarse and fine sandstones led to significantly reduced porosity, and so can represent barriers or baffles to lateral fluid flow. Microstructural data show preferential cataclasis of K-feldspar grains within the host rock and deformation band. The study is of direct relevance to the prediction of reservoir quality in several petroleum-bearing Lower Triassic reservoirs in the near offshore, as deformation band development occurred prior to Carboniferous source-rock maturation and petroleum migration.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction

P. J. Armitage
P. J. Armitage
BP Upstream Technology, UK
Search for other works by this author on:
A. R. Butcher
A. R. Butcher
Geological Survey of Finland, Finland
Search for other works by this author on:
J.M. Churchill
J.M. Churchill
Shell UK Ltd, UK
Search for other works by this author on:
A.E. Csoma
A.E. Csoma
MOL Group Exploration, Hungary
Search for other works by this author on:
C. Hollis
C. Hollis
University of Manchester, UK
Search for other works by this author on:
R. H. Lander
R. H. Lander
Geocosm, USA
Search for other works by this author on:
J. E. Omma
J. E. Omma
Rocktype, UK
Search for other works by this author on:
R. H. Worden
R. H. Worden
University of Liverpool, UK
Search for other works by this author on:
The Geological Society of London
Volume
435
ISBN electronic:
9781786202901
Publication date:
January 01, 2018

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal