Skip to Main Content
Book Chapter

Effective radium-226 concentration in rocks, soils, plants and bones

By
Frédéric Perrier
Frédéric Perrier
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, F-75005 Paris, France
Search for other works by this author on:
Frédéric Girault
Frédéric Girault
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, F-75005 Paris, France
Search for other works by this author on:
Hélène Bouquerel
Hélène Bouquerel
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, F-75005 Paris, France
Search for other works by this author on:
Published:
January 01, 2018

Abstract

Effective radium-226 concentration, ECRa, is the product of radium activity concentration, CRa, multiplied by the emanation coefficient, E, which is probability of producing a radon-222 atom in the pore spaces. It is measured by accumulation experiments in the laboratory, achieved routinely for a sample mass >50 g using scintillation flasks to measure the radon concentration. We report on 3370 ECRa values obtained from more than 11 800 such experiments. Rocks (n=1351) have a mean ECRa value of 1.9±0.1 Bq kg−1 (90% of data in the range 0.11–35 Bq kg−1), while soils (n=1524) have a mean ECRa value of 7.5±0.2 Bq kg−1 (90% of data between 1.4 and 28 Bq kg−1). Using this large dataset, we establish that the spatial structure of ECRa is meaningful in geology or sedimentology. For plants (n=85), ECRa is generally <1 Bq kg−1, but values of larger than 10 Bq kg−1 are also observed. Dedicated experiments were performed to measure emanation, E, in plants, and we obtained values of 0.86±0.04 compared with 0.24±0.04 for sands, which leads to estimates of the radium-226 soil-to-plant transfer ratio. For most measured animal bones (n=26), ECRa is >1 Bq kg−1. Therefore, ECRa appears essential for radon modelling, health hazard assessment and also in evaluating the transfer of radium-226 to the biosphere.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Radon, Health and Natural Hazards

G. K. Gillmore
G. K. Gillmore
Kingston University, UK
Search for other works by this author on:
F. E. Perrier
F. E. Perrier
University Paris Diderot, France
Search for other works by this author on:
R. G. M. Crockett
R. G. M. Crockett
University of Northampton, UK
Search for other works by this author on:
The Geological Society of London
Volume
451
ISBN electronic:
9781786203328
Publication date:
January 01, 2018

GeoRef

References

Related

Citing Books via

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal