Skip to Main Content
Skip Nav Destination

Effective radium-226 concentration, ECRa, is the product of radium activity concentration, CRa, multiplied by the emanation coefficient, E, which is probability of producing a radon-222 atom in the pore spaces. It is measured by accumulation experiments in the laboratory, achieved routinely for a sample mass >50 g using scintillation flasks to measure the radon concentration. We report on 3370 ECRa values obtained from more than 11 800 such experiments. Rocks (n=1351) have a mean ECRa value of 1.9±0.1 Bq kg−1 (90% of data in the range 0.11–35 Bq kg−1), while soils (n=1524) have a mean ECRa value of 7.5±0.2 Bq kg−1 (90% of data between 1.4 and 28 Bq kg−1). Using this large dataset, we establish that the spatial structure of ECRa is meaningful in geology or sedimentology. For plants (n=85), ECRa is generally <1 Bq kg−1, but values of larger than 10 Bq kg−1 are also observed. Dedicated experiments were performed to measure emanation, E, in plants, and we obtained values of 0.86±0.04 compared with 0.24±0.04 for sands, which leads to estimates of the radium-226 soil-to-plant transfer ratio. For most measured animal bones (n=26), ECRa is >1 Bq kg−1. Therefore, ECRa appears essential for radon modelling, health hazard assessment and also in evaluating the transfer of radium-226 to the biosphere.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal