Skip to Main Content
Skip Nav Destination

ABSTRACT

Mono Lake occupies an internally drained basin on the eastern flank of the Sierra Nevada, and it is sensitive to climatic changes affecting precipitation in the mountains (largely delivered in the form of snowpack). Efforts to recover cores from the lake have been impeded by coarse tephra erupted from the Mono Craters, and by disruption of the lake floor due to the uplift of Paoha Island ~300 yr ago. In this study, we describe the stratigraphy of cores from three recent campaigns, in 2007, 2009, and 2010, and the extents and depths of the tephras and disturbed sediments. In the most successful of these cores, BINGO-MONO10-4A-1N (BINGO/10-4A, 2.8 m water depth), we used core stratigraphy, geochemistry, radiocarbon dates, and tephrostratigraphy to show that the core records nearly all of the Holocene in varying proportions of detrital, volcanic, and authigenic sediment. Both the South Mono tephra of ca. 1350 cal yr B.P. (calibrated years before A.D. 1950) and the 600-yr-old North Mono–Inyo tephra are present in the BINGO/10-4A core, as are several older, as-yet-unidentified tephras. Laminated muds are inferred to indicate a relatively deep lake (³10 m over the core site) during the Early Holocene, similar to many records across the region during that period. The Middle and Late Holocene units are more coarsely bedded, and coarser grain size and greater and more variable amounts of authigenic carbonate detritus in this interval are taken to suggest lower lake levels, possibly due to lower effective wetness. A very low lake level, likely related to extreme drought, is inferred to have occurred sometime between 3500 and 2100 cal yr B.P. This interval likely corresponds to the previously documented Marina Low Stand and the regional Late Holocene Dry Period. The BINGO/10-4A core does not preserve a complete record of the period encompassing the Medieval Climate Anomaly, the Little Ice Age, and the historical period, probably due to erosion because of its nearshore position.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal