Skip to Main Content
Book Chapter

A lignin, diatom, and pollen record spanning the Pleistocene–Holocene transition at Fallen Leaf Lake, Sierra Nevada, California, USA

By
G. Ian Ball
G. Ian Ball
Scripps Institution of Oceanography, Geosciences Research Division, La Jolla, California 92093, USA
Search for other works by this author on:
Paula J. Noble
Paula J. Noble
Department of Geological Sciences and Engineering, University of Nevada, Reno, Nevada 89557, USA
Search for other works by this author on:
Brandon M. Stephens
Brandon M. Stephens
Scripps Institution of Oceanography, Geosciences Research Division, La Jolla, California 92093, USA
Search for other works by this author on:
Anna Higgins
Anna Higgins
Department of Geography, University of Nevada, Reno, Nevada 89557, USA
Search for other works by this author on:
Scott A. Mensing
Scott A. Mensing
Department of Geography, University of Nevada, Reno, Nevada 89557, USA
Search for other works by this author on:
L.I. Aluwihare
L.I. Aluwihare
Scripps Institution of Oceanography, Geosciences Research Division, La Jolla, California 92093, USA
Search for other works by this author on:
Publication history
15 November 201720 April 2018

ABSTRACT

Lignin phenol, pollen, and diatom analyses were performed on dated sediments (13,533–8993 cal yr B.P.) recovered from Fallen Leaf Lake, California. This multiproxy data set constrains the end of the Tioga glaciation in the Lake Tahoe Basin and reconstructs the response of the region’s aquatic and terrestrial ecosystems to climatic changes that accompanied the Younger Dryas, the end of the Pleistocene, and early Holocene warming. From the Pleistocene to the Holocene, lignin concentrations and syringyl/vanillyl (S/V) ratios increased, while cinnamyl/vanillyl (C/V) ratios and the lignin phenol vegetation index (LPVI) decreased, recording the proliferation of woody plant material and, particularly, the expansion of angiosperms as the Tioga glaciation ended and temperatures warmed. This interpretation is constrained by lignin phenol analyses of plant material from Fallen Leaf Lake’s present-day watershed. Complementary palynological analyses show a transition from a gymnosperm-dominated landscape to a more mixed angiosperm-gymnosperm vegetation assemblage that formed as closed canopy forests became more open and grasses and aster colonized meadows. Aquatic flora assemblages, in the form of greater amounts of green algae and greater percentages of diatom phytoplankton, indicate increased levels of lake primary productivity in response to warming. Principal component analysis (PCA) distinctly resolves the Pleistocene from the Holocene diatom flora. The Pleistocene flora is dominated by cyclotelloids and low-mantled Aulacoseira species that are rare in Fallen Leaf Lake today, but common at higher and colder elevations that may resemble the Pleistocene Fallen Leaf Lake. The Holocene diatom flora is dominated by Aulacoseira subarctica.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

From Saline to Freshwater: The Diversity of Western Lakes in Space and Time

Geological Society of America
Volume
536
ISBN electronic:
9780813795362

GeoRef

References

Related

Citing Books via

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal