Skip to Main Content

ABSTRACT

The Natural History Museum Vienna is one of the most important museums of natural history in the world. Its collections date back to the year 1750, when the Emperor Franz Stephan of Lorraine (Franz I. Stephan) purchased (from Italy) what was then the largest and most famous collection of natural history specimens. The meteorite collection of the Natural History Museum in Vienna, Austria, has the longest history of all comparable collections in the world. In the second half of the eighteenth century, soon after the foundation of the Imperial Natural History Cabinet in 1750, the Viennese curators began to collect meteorites. Although the first curators neither believed in the extraterrestrial origin nor accepted—in several cases—the written and witnessed histories of these allegedly “heavenly” stone and iron masses, they preserved them in the Natural History collection. Among the first acquisitions were the historical important meteorites Hraschina (Agram), Tabor, Krasnojarsk (Pallas iron), and Eichstädt. These and other well-documented specimens from the Vienna collection were, for example, used by E.F.F. Chladni for his seminal treatises of 1794 and 1819, respectively. The central figure in the early history of the collection is Carl von Schreibers (1775–1852). After the fall of the Stannern meteorite in 1808, he availed himself of every opportunity to acquire meteorite specimens. His continued interest in meteorites laid the foundation for the Vienna collection to be of the historical and scientific importance it is today. Due to the efforts of Schreibers, who also is regarded as founder of meteoritic science in Vienna, and his successors, the Vienna collection became the largest and most extensive in the course of the nineteenth century.

In terms of the geological and paleontological collections, early expeditions and collecting campaigns were mainly targeting exotic animals and plants, while paleontological objects were welcome but subordinate. It was only in the early nineteenth century that the paleontological collections were—literally and figuratively speaking—systematically enlarged. Internationalization and diversification became the focus of the collection strategy. The paleontology collections at the Vienna museum also became important in the Darwinian view of evolution.

INTRODUCTION: THE NATURAL HISTORY MUSEUM VIENNA

The Natural History Museum Vienna (NHMW) is one of the most important museums of natural history in the world. Its collections date back to the year 1750, when the Emperor Franz Stephan of Lorraine (Franz I. Stephan) (1708–1765) purchased what was then the largest and most famous collection of natural history specimens in the world from the Florentine scholar Jean de Baillou (1684 or 1686–1758). Following the death of Franz Stephan in 1765, Maria Theresia (1717–1780) decided to give this collection to the state. The objects were displayed in a wing of the imperial palace and opened to the public twice a week. The collection grew steadily through further activities, above all from many overseas expeditions. This led to a shortage of space in the imperial palace. In the course of the revolution in 1848, parts of the very crammed collections were burned.

After the demolition of the old city walls in 1858, initiated by Emperor Franz Josef I (1830–1916), the court museums were conceived as one part of the development of the Ringstrasse (the road encircling Vienna’s most central district). For the first time, all collections could be accommodated in one large building in the 1st district of Vienna. The building offered enough room not only for the safekeeping and study of the specimens but also for their public display. At its opening in 1889, the Natural History Museum of Vienna thus became one of the first museum buildings of its kind in the world. Despite severe setbacks caused by the two world wars, it has been possible to preserve both the building itself and the valuable collections, which today consist of ~30 million collection numbers and many more individual items.

The historical building (Fig. 1) and its fixtures and fittings of course present a variety of problems today, not only in preparing new exhibitions and educational events, but also, for example, in meeting modern requirements for working conditions, fire protection, and access for the disabled. Naturally, the leaders, curators, and also the Austrian government as owner can and must address these challenges today. However, it is precisely these historical considerations that make the Natural History Museum Vienna so attractive, in contrast to modern science centers that have no historical furnishings or extensive collections of this kind. The Natural History Museum Vienna is today an important center of knowledge for questions related to natural science and one of the largest non-university research institutions in Austria. It houses some modern research laboratories, such as state-of-the-art electron microprobe, electron microscopy, and DNA facilities. The museum has a total staff of ~330 people, with its research departments being home to ~60 scientists (plus project staff) carrying out basic research in a wide variety of fields of earth science, biology, and human sciences. The museum scientists publish (or are involved in) over 200 peer-reviewed scientific publications every year, participate in dozens of Austrian and international third-party–funded research projects, host hundreds of scientific visitors from all over the world who use the collections and facilities, organize and participate in scientific meetings, and are involved in teaching classes at or hosting students from most of the Viennese and Austrian universities (even though in terms of administration, the museum belongs to the portfolio of the culture ministry in Austria, whereas the universities are affiliated with the science ministry).

Figure 1.

The Natural History Museum Vienna today with the monument of Maria Theresia.

Figure 1.

The Natural History Museum Vienna today with the monument of Maria Theresia.

Research departments and collections at the museum include anthropology, botany, geology, meteorites, mineralogy, petrology, paleontology, prehistory, and zoology, as well as an archive and extensive libraries. Several technical departments (such as exhibits, education, outreach, ecology, library, event management, communications, and media), scientific laboratories, and taxidermy facilities complete the portfolio of the museum. The museum has three external branches: one is in Hallstatt (Upper Austria), where NHMW staff has performed archeological excavations for more than 50 years. The ecological station in Petronell (Lower Austria), near the River Danube, allows hundreds of groups and school classes to participate in a variety of ecological courses and excursions to the Danube wetlands. The pathological-anatomical collection (a collection of objects—mostly human anatomical and pathological specimens, wax models, and antique medical equipment) in the so-called “Narrenturm” building in the 9th district of Vienna is part of the anthropological department of the NHMW. In 2016, despite continuing interior renovations, more than 36,000 visitors were counted at the “Narrenturm.” The collections there are the largest of their kind in the world, and updated exhibits are planned for when the renovations of the building are completed.

In 2017, the Natural History Museum Vienna counted more than 750,000 visitors, making it one of the most visited museums in Austria. Over the past several years, the permanent exhibits on dinosaurs, meteorites, and prehistory were thoroughly renovated (in many cases, for the first time in decades) and reopened to the public in 2011, 2012, and 2015, respectively. In addition, a new permanent exhibit on anthropology (focusing on the origin and evolution of humans) was established in 2013. Additional smaller adaptations to the permanent exhibits were made in the mineralogical and zoological halls. For example, in mineralogy, the collection of building stones and decorative stones (the largest at least in Europe) was presented in a modern new exhibit space, and just recently, in April 2017, some showcases that present introductory mineralogy were refurnished and modernized and now show the concept of “mineral evolution,” i.e., how the abundance and composition of minerals on Earth changed with time as a result of changing environmental conditions (cf. Hazen et al., 2008).

In all cases of modernizing permanent exhibits, several guiding concepts were used, besides renovating the historic showcases (where available and necessary) or adding fitting new showcases and installing state-of-the art lighting and alarm systems. Brief but specific information (often lacking from old displays) explaining the general importance of objects or collections and their scientific value was included. The philosophy of the NHMW is that at the center of attention should be the objects themselves. In some cases, important selections were made as opposed to earlier attempts to show as many objects (often without explanation) as possible. All these newly designed exhibits turned out to be major attractions for the public (and for experts and students as well). In late 2014, as part of the 125th anniversary celebrations of the museum building, a digital planetarium was installed in Hall 16. This new facility features full-dome projection technology and supplements the outreach facilities of the museum. In summary, the Natural History Museum Vienna has not only a long history and tradition of its very valuable collections, but also is a major and modern research institution and a very attractive place for the public to learn about and be entertained by the importance of the natural sciences.

The following sections describe the general (early) history of the establishment of the collections, followed by the history and importance of the meteorite collection (the oldest in the world, the largest meteorite display in the world, and one of the top three or so in terms of importance and numbers), and the role of the paleontological collections for the concept of evolution.

EARLY HISTORY OF THE “NATURALIENSAMMLUNG”

The Early Years of Franz I. Stephan’s Collections Told through a Painting

Before describing how the early natural sciences collections in Vienna were established, we start with an illuminating story. The famous Kaiserbild (a painting showing the emperor), located in the grand staircase of the Natural History Museum, depicts the Emperor Franz I. Stephan (seated) with the directors of the imperial collections. The collections are not only represented by their directors but also by objects that are either held or are standing next to the collections directors. At the center of the painting is the director of the “Cabinet des Medailles et des Monnaies” (Cabinet of Medals and Coins), Valentin Jamery Duval (1695–1775), who is holding a drawer with gold coins and medals; standing to the left of Duval is the director of the “Cabinet des Curiosités Naturelles” (Cabinet of Natural Curiosities), Jean de Baillou, wearing the dress uniform of an artillery officer in the rank of lieutenant-colonel and holding an ammonite; the director of the “Cabinet des Machines” (Physical and Astronomy Cabinet), Abbé Jean François de Marcy (1707–1791), is positioned in the lower right corner, standing next to a globe and a pair of compasses, and the court physician and prefect of the imperial library, Gérard van Swieten (1700–1772), is standing in the lower left side of the painting and holds a book (see Fig. 2).

Figure 2.

Painting by Franz Messmer and Jakob Kohl of Franz I. Stephan with the directors of his collections and the court physician; the painting is called the Kaiserbild and was created in 1773. Standing at the center of the painting is the director of the “Cabinet des Medailles et des Monnaies” (Cabinet of Medals and Coins), Valentin Jamery Duval; to the left of Duval is the director of the “Cabinet des Curiosités Naturelles” (Cabinet of Natural Curiosities), Jean de Baillou. The director of the “Cabinet des Machines” (Physical and Astronomy Cabinet), Abbé Jean François de Marcy (1707–1791), is positioned in the lower right corner; and the court physician and prefect of the imperial library, Gérard van Swieten (1700–1772), is standing at the lower left side behind the Emperor, who is sitting in a chair.

Figure 2.

Painting by Franz Messmer and Jakob Kohl of Franz I. Stephan with the directors of his collections and the court physician; the painting is called the Kaiserbild and was created in 1773. Standing at the center of the painting is the director of the “Cabinet des Medailles et des Monnaies” (Cabinet of Medals and Coins), Valentin Jamery Duval; to the left of Duval is the director of the “Cabinet des Curiosités Naturelles” (Cabinet of Natural Curiosities), Jean de Baillou. The director of the “Cabinet des Machines” (Physical and Astronomy Cabinet), Abbé Jean François de Marcy (1707–1791), is positioned in the lower right corner; and the court physician and prefect of the imperial library, Gérard van Swieten (1700–1772), is standing at the lower left side behind the Emperor, who is sitting in a chair.

According to the inscription beneath the painting, it was made eight years after the emperor’s death and was considered by contemporaries to be one of the best portraits of Franz I. Stephan. It even served as reference for the glass painting created for the “Lothringersaal” of Laxenburg Castle in 1830 (Wandruszka, 1962). The painting was commissioned by Maria Theresia, the widow of Franz I. Stephan, was executed by the court painters, Franz Messmer (1728–1773) and Jakob Kohl (1734–1788), and was completed in 1773 (Lhotzky, 1941–1945). Based on an entry in the Geheimen Kammerzahlamtsbücher (privy chamber payments office books), Messmer had received 300 ducats in 1767 for the production of a painting depicting the emperor with the court physician van Swieten, Abbé Marcy, Duval, and Baillou in the “Naturalien-Cabinet” (Fleischer, 1932). According to Fitzinger (Fitzinger, 1856), Messmer, one of the premier portraitists of his time, was responsible for painting the heads, while the remaining parts such as clothes, background, etc., were done by Jakob Kohl (Lhotsky, 1941–1945). Among the portrayed persons, only Duval, who returned to the Netherlands in 1765, would have been able to see the finished work, because the other directors and the court physician died several years before the completion in 1773; incidentally, 1773 also is the year of Messmer’s death. The furniture shown in the painting partly sprang from the artist’s imagination, and the Naturalien-Cabinet wasn’t moved to the Augustinergang of the imperial palace until after the emperor’s death (Stütz, 1807; Fitzinger, 1868b; Lhotsky, 1941–1945). Some objects and specimens that served the painters as models such as the emerald held by Franz I. Stephan and the snails and shells on the table and in the cabinets were part of Jean de Baillou’s original collection, which was bought by the emperor. Some other objects, such as the quartz crystal lying at the feet of Abbé Marcy, were added ca. 1935 nearly one and a half century after the painting was completed. The quartz crystal, which is still part of the museum’s mineralogical collections, was most likely added by conservators to cover up damage to the painting. A historical drawing of the painting made by A. Obsieger in 1859, as well as historical photographs and movies from before 1935, show a bare floor where the crystal now lies (Figs. 3 and 4). In the course of the restoration and conservation work done on the painting in 1992, infrared and X-ray analyses were conducted and revealed five men who were painted over (Figs. 5 and 6). One of the persons wears a clerical collar, which leads to the conclusion that the person portrayed had been a member of the Jesuit order; another person was identified as a servant (Riedl-Dorn, 1998). The clergyman was the only fully completed figure; the other four people were in different stages of completion, mostly sketches with some paint. Using the technique of image matching, Christa Riedl-Dorn and Nora Pärr were able to identify the Jesuit as Maximilian Hell (1720–1792), the first director of the University observatory in Vienna (Fig. 7) (Pärr, 2013).

Figure 3.

A. Obsieger’s copy of the Kaiserbild, 42.7 × 50.5 cm, pencil drawing, 1859; the drawing shows the Kaiserbild without the quartz crystal at the feet of Abbé Marcy.

Figure 3.

A. Obsieger’s copy of the Kaiserbild, 42.7 × 50.5 cm, pencil drawing, 1859; the drawing shows the Kaiserbild without the quartz crystal at the feet of Abbé Marcy.

Figure 4.

Photograph of the Kaiserbild, 1905. This historic photograph of the Kaiserbild shows the painting without the quartz crystal at the feet of Abbé Marcy.

Figure 4.

Photograph of the Kaiserbild, 1905. This historic photograph of the Kaiserbild shows the painting without the quartz crystal at the feet of Abbé Marcy.

Figure 5.

Detail of an X-ray image of the Kaiserbild. The X-ray was made in the course of restoration work done to the Kaiserbild in 1992 and shows a painted-over person who was later identified as Maximilian Hell.

Figure 5.

Detail of an X-ray image of the Kaiserbild. The X-ray was made in the course of restoration work done to the Kaiserbild in 1992 and shows a painted-over person who was later identified as Maximilian Hell.

Figure 6.

Photograph of the Kaiserbild with delineated contours of the painted-over persons who were discovered in the course of restoration work done to the painting in 1992.

Figure 6.

Photograph of the Kaiserbild with delineated contours of the painted-over persons who were discovered in the course of restoration work done to the painting in 1992.

Figure 7.

Johannes Esaias Nilson (1721–1788), Portrait of Maximilian Hell, engraving, ca. 1770.

Figure 7.

Johannes Esaias Nilson (1721–1788), Portrait of Maximilian Hell, engraving, ca. 1770.

Maximilian Hell was invited in 1769 by the king of Denmark to observe the Venus transit. Following the invitation, he traveled, together with his assistant, the linguist János Sajnovics, to Vardø in Norway, and then to Denmark and Norway. The Venus passage enabled Hell to calculate the distance between the sun and the moon. He published his findings in the book, Observatio Transitus Veneris Ante Discum Solis Die 3. Junii Anno 1769, which was financed by the Royal Danish Academy of Sciences and Letters. Meanwhile the mood turned against the Jesuits, culminating in a papal decree in 1773 effectively dissolving the order. Hell was posthumously accused by the later dean of the University of Vienna, Carl Ludwig von Littrow (1811–1877), of having falsified the data; however, later research has absolved Hell of that accusation. A strong argument can be made that the dissolution of the order and the emperor distancing himself from its members might be the reason that Hell was painted over (Riedl-Dorn, 1998). A fact that gives some credence to this theory is that the final dissolution of the order coincides with the completion of the painting. The emperor was also very much in favor of the dissolution because the property and possessions of the order went, among others, to the state and the emperor’s coffer. The vast scientific collections of the Austrian Jesuits were divided among different institutions and museums.

The anachronism the painting inadvertently brings to light also characterizes the historical accounts of the foundation of the natural history collection. Similar to the painting, things have been painted over, added, and/or distorted and could only be revealed and corrected by intensive research.

Precursors of the Natural History Collections

The Habsburg rulers of the early modern age were already interested in natural sciences and had their own natural history collections. These early collections had more in common with curiosity cabinets than natural sciences collections. The cabinets of Ferdinand I (1503–1564) and Rudolph II (1552–1612) are still known today. A common characteristic of the cabinets was to show everything that god and men had created and make it available to interested people for research. Antiquities, artwork, armor, and automatons were exhibited next to astronomy tools, minerals, corals, animals, and strange objects from nature. An example of a “Kunst-und Wunderkammer” (Cabinet of Art and Wonders) that still exists is the collection of Archduke Ferdinand II (1529–1595) of Tyrol located at Schloss Ambras. A large number of objects from the Ambras Cabinet, such as the emerald stage from Colombia or an ammonite referred to as “Schlangenstein” (serpent stone), are kept at the Natural History Museum Vienna (Fig. 8). The first natural history collections mentioned in relation to the “Kaiserliche Kunst-und Schatzkammer” (Imperial Art Cabinet and Treasury) in Vienna were those of Emperor Maximilian II (1527–1576). A report about the “kayserliche Schatz und Kunst Cammer” from 1730 (Küchelbecker, 1730) describes the cabinet as housing all kinds of curiosities, red corals, artwork made from corals, as well as horns from different species of land- and water-based “unicorns.” While the aristocrats had their “Kunst-und Wunderkammer,” which were geared toward the extraordinary, scholars, pharmacists, and physicians had their own reference collections that they used for education and for scientific studies; these collections were referred to as “Studioli.” These collections were often precursors to natural history cabinets. Even after Franz I. Stephan founded an official natural history collection, “Naturalien-Cabinet,” extraordinary objects such as “Aeroliths” (meteorites) were kept in the treasury instead of the natural history collection. An example is the iron meteorite of Hraschina, which fell on 26 May 1751 and was presented to the emperor, who had it transferred to the treasury. The meteorites were moved from the treasury to the “Naturalien-Cabinet” in 1778, 13 years after the emperor’s death (see section “On the Early History and Importance of the Meteorite Collection at the Natural History Museum Vienna”).

Figure 8.

Ammonite coroniceras rotiforme from the Ambrasian Collection.

Figure 8.

Ammonite coroniceras rotiforme from the Ambrasian Collection.

Emperor Franz I. Stephan’s Collections

Three of the collections represented on the painting by their directors were established by Franz I. Stephan, who was already familiar with scientific collections from his time in Lorraine and Florence where scientific collections had already been established for quite some time. The three collections were (1) the “Physikalisch-Astronomisches Kabinett” (Physical and Astronomy Cabinet), headed by the Jesuit priest and mathematician, Abbé Jean Francois de Marcy, which housed globes, automatons, machines, and astronomical instruments, such as a heliocentric mechanical planetarium; (2) the “Münzkabinett” (Cabinet of Medals and Coins), headed by the well-known numismatist, Valentin Jameray-Duval, which housed coins and medals; and (3) the “Naturaliensammlungen” (natural history collection), headed by Jean de Baillou. According to Fitzinger, all three cabinets were founded in 1748; however, the founding date of the natural history collection does not hold up to close scrutiny. The famous historian, Alfons Lhotzky (1903–1968) had doubts about the founding date of the “Naturaliensammlungen” established by in-house historian Fitzinger (Lhotzky, 1941–1945), who considered the acquisition of the natural history collection of the Florentine nobleman, Jean de Baillou, by Franz I. Stephan, the starting point or beginning of the “Naturaliensammlung.” In an article about the history of the “Hof-Mineraliencabinet” (imperial minerals cabinet), Ferdinand von Hochstetter, the first “Intendant” of the “k.k. Naturhistorisches Hofmuseum” mentioned 1747 (Hochstetter, 1884) as the founding year of the “Naturalien-Kabinett.” A diary entry of Prince Johann Joseph Khevenhüller (1706–1776) from 29 January 1752 says: “… I had the honor of visiting the Naturalien-Cabinet with the emperor who had bought the cabinet one year ago from M.[onsieur] Baillou in Florence….” (Lhotzky, 1941–1945; Riedl-Dorn, 1998). The diary entry suggests that the cabinet was acquired in 1751 and not in 1748 as Fitzinger claimed. Also wages for the staff off the “Cabinet des Machines” (Physikalisch Astronomisches Cabinet) and for the staff of the “Cabinet des Curiosités Naturelles” (Naturalien-Cabinet) aren’t listed separately in the expenditure list of the imperial household until 1752 (ÖStA/HHStA, Posch-Akten, jüngere Serie, Karton 8).

The Acquisition of Chevalier Jean de Baillou’s Collections by the Emperor

Facts about the history of the Natural History Museum: On 11 January 1749, Emmanuel de Navy Count Richecourt (1697–1759) in Florence received a dispatch (ASF Consiglio di Reggenza, Fasz. 6: Depeches au Conseil des Finances de l’anneé 1745, fol 82r.) stating the desire for acquiring the “cabinets de Jean de Baillou.” Count Richecourt should make an offer over 40,000 scudi, but if necessary, the offer could be raised. On 28 January 1749, he wrote in a letter to his “sacré Majesté” (ASF, Consiglio die Reggenza 23 Carta 27) that he had made an offer to Jean de Baillou to buy his cabinet but that Baillou wanted first to seek advice before committing to the sale. Duval acted most likely as negotiator for this sale (Tromballa, 1953).

Under the budget item “unsafe and extraordinary expenses” in the Ristretto dell’ Incassato, e Speso dalla Depositeria generale de S.M.J. in Firenze in un anno dal primo gennaio a tutto dicembre 1749, we find the entry 42,000 scudi for “Cav. Gio. Baillou per conto del Museo” (ASF Consiglio di Reggenza 24, p. 287 “Per causa ordinaria” “Spese incerte e Straordinarie”), and between January and end of July of 1750, The Ristretto dell’incassato shows expenses of 21,000 scudi for “Cav. Gio. Baillou per conto del Museo” (ASF Consiglio di Reggenza 24, p. 286, Ristretto dell’ Incassato in mesci setti—cive dal primo gennaio a tutto luglio 1750). Instructions given on 3 October 1750 state that Baillou is to be paid 42,000 scudi right away (ASF Consiglio di Reggenza, 24 p 295r Dimonstrazionen della differnza che si ved dal Resultato de le Ristrello dell Entrata e Spese della Deposita S. equile nellánno 1749. …). Apart from the purchase price, it was agreed that Chevalier de Baillou would receive the post of director of the newly founded “Mineralien-Cabinet” and that the directorship should be hereditary in his family and to be transferred to the eldest son upon death or retirement (Born, 1780; Haidinger, 1782). Franz I. Stephan showed interest in the natural sciences even before the acquisition of the Baillou collections; he was especially interested in experiments for which he had bought a large number of diamonds (Grauer, 1932). He also acquired one of the largest burning mirrors of that time (Stütz, 1807) to conduct his experiments about the combustibility of diamonds, which, according to Abbé Andreas Xaver Stütz (1747–1806), was proven without a doubt, when the emperor burned diamonds worth several thousand guilder in 1751 (Stütz, 1807). Franz I. Stephan and his brother Carl (1712–1780) enclosed diamonds and rubies in a pyramid-shaped earthen jar and left the jar in a strong fire for 24 hours. They observed that the diamonds had vanished, whereas the rubies remained unchanged (Bauer, 1883). Other sources tell of experiments Franz I. Stephan had conducted together with the Jesuit and professor of mathematics and astronomy of the University of Vienna, George Joseph Franz (1704–1776), at the chemistry laboratory of the Jesuits. The goal of the experiments was to find whether it was possible to create a large diamond or emerald by melting several small diamonds or small emeralds using focused sunlight (Fitzinger, 1856). The priest, Georg Joseph Franz, was also responsible for establishing a Jesuit museum and the laboratories connected to the museum. Together with Maximilian Hell, he founded the first public observatory in Vienna in 1755. He also headed the “Orientalische Akademie” for several years. The mineralogical department of the Natural History Museum Vienna possesses some burned diamonds that were thought to be connected to Franz I. Stephan’s experiments, but modern research has cast some doubt on this assertion. Johann Georg Megerle von Mühlfeld (1780–1831) mentions 1807 in his supplement to Stütz (Stütz, 1807) that the “Mineralien-Cabinet” has a diamond that was transformed into carbon from the collection of Cosimo III de’ Medici (1642–1723) in its holdings. Megerle refers to the diamond as monumental to the beginning of the era of scientific studies. Cosimo III had conducted research on the effects of using the focused beam of a burning mirror on a diamond. The interest in conducting experiments using burning mirrors didn’t end with Franz I. Stephan’s death. On 8 March 1775, Maximilian Hell, Nicolaus Joseph von Jacquin (1727–1817), Georg Joseph Franz, and Joseph Anton Nagel (1717–1804) (ÖStA/HHStA, Sonderreihe, Karton 371, Mappe 8, Bericht) assessed an expensive burning mirror that the University of Vienna had considered buying.

The First Director of the Natural History Collections, Chevalier Jean de Baillou

How did Jean de Baillou, who was often portrayed as a lieutenant colonel, become director of the “Naturalien-Cabinet”? Jean de Baillou was born either 1684 (Blöchlinger, 1868) or 1686 (Bergmann, 1856; Tromballa, 1953) as son of Marguerite de Gonet and Sebastian de Baillou in France or Italy (Fitzinger, 1856). The family moved from France to Italy. The family can be traced back to the thirteenth century and originally stems from a small village in Flanders (ASF, Deputazione sopra la nobiltá e cittadinanza Fasc. 18). Jean studied mathematics and natural sciences in Paris. Prior to that, he worked for the prince of Lorraine-Vaudemont, who had him instructed in mathematics, riding, and fencing. In 1710, he married the Marchesa Monti della Scrivia, who bore him five daughters and three sons.

Sometime prior to 1718, he moved to the court of Duke Francesco Farnese in Parma (1678–1727). He started out as court architect, and in 1725, he received the positions of general commissioner of the artillery of the duchy of Parma and general engineer, as well as general director of the mining operations. Following Francesco Farnese’s death in 1727, Baillou continued to serve Francesco’s brother, Antonio. In 1731, he moved to Florence to serve the last Medici Grand Duke Gian Gastone. In 1735, he was made director of the famous Uffizi galleries, and in 1736, he advanced to director of all gardens, fortresses, buildings, and mines in the Grand Duchy of Tuscany. After Gian Gastone’s death in 1737, Francis of Lorraine, the later emperor Franz I. Stephan, succeeded him as Grand Duke of Tuscany. Francis confirmed Baillou’s positions and dignities and made him a member of the Habsburg-Lorraine court.

During this time, wonders about the knowledge and skills of Baillou are described (Mambriani, 1994), especially a strange little book written by a former “student” of his (Joannon de Saint-Laurent; see below); the book extols the virtues and knowledge of Baillou. According to the book, Baillou was not only a brilliant physicist who could recite Newtonian laws of optics as if he had written them himself, but he was also a brilliant inventor without an equal in Italy. It is not clear if the description of Baillou’s achievements in the field of optics is the result of the author confusing Jean de Baillou with his brother François, who worked as an optician in Milan and was honored in 1750 by Empress Maria Theresia with the title of “Regio Cesare Optico” (court optician; Lualdi, 1996). Furthermore, Jean de Baillou’s inventions were usually in the field of mechanics. His best known creation by all accounts was the “magic grotto” of Colorno, a series of automatons retelling stories from Greek mythology. Little is known about the author of the book, Joannon de Saint-Laurent (1714–1783); he seems to have been an adventurer, philosopher, archaeologist, physician, and naturalist. He was born in Lyon and later moved to Italy. In 1745, he came in contact with the literary circles of Florence, where he most likely met Baillou (Garms-Cornides, 1999). In 1746, Saint Laurent had offered Baillou the opportunity to produce an inventory of his collections, but Baillou declined. In the same year, Joannon de Saint Laurent wrote the Déscriptions abregée du fameux cabinet des M. le Chevalier de Baillou pour servir a l’histoire naturelle des pierres précieuses, métaux, minéraux et autres fossiles (A short description of the famous cabinet of M. the Chevalier de Baillou to function as guide to the natural history of precious stones, metals, minerals, and other fossils) without Baillou’s knowledge or authorization. Through the intervention of Count Leopold Anton von Firmian (1679–1744), whom he also met in Florence, he was employed in the Lombardian administration.

Baillou had started his natural history collection while working for Francesco Farnese in Parma. The foundation of the cabinet is probably related to Baillou’s position as general director of the mining operations as which he had to conduct scientific research in the mines. Over time, the collection grew to over 30,000 objects covering a wide range of themes. The collection included a grain of sand, artificial gemstones, mineral samples, fossils, snails, seashells, and a large number of corals. The collections became famous all over Europe and were visited by noblemen and scientists alike. The electoral prince of Saxony was an often-seen guest and was especially interested in experiments on magnetism. The prince supposedly told Baillou that Baillou was the true interpreter of nature (Blöchlinger von Bannholz, 1864). Unlike other natural history cabinets, Baillou’s collections were not meant to show off the owner’s wealth but to educate and fight ignorance and superstition. In the previously mentioned book by Joannon de Saint-Laurent, the author praises the principles of arrangement of the objects, based on an assumed nature-immanent system and the use for mankind. According to Saint-Laurent, the principles were also supposed to serve as a basis for a series of illustrated books about natural history written by Jean de Baillou under the title, Traité universel des pierres précieuses, métaux, minéraux et autres fossiles, le tout distribué dans ses propres classes. Où l’on trouve leurs diférents noms, leurs origines, leurs analises, leurs principes, leurs qualités, leurs étimologies, leurs choix, et tout ce qui’il y a de particulier et remarquables en les exposant au foier de al lentille astronomique et du mirroir ardent. On y traite aussi des plantes marines pierreuse, crustacés et coquillages de mer, soit dans leur état naturel, soit en diférens degrés des Calcination et de pétrification. On donne a la fin: La maniere de travailler toutes sortes de pierres, et celles de les imiter par les voies le plus courtes et dans leur plus grande perfection (Saint-Laurent, 1746) (Universal treatise on precious stones, metals, minerals and other fossils, all distributed in its own classes. Where we find their different names, their origins, their analisms, their principles, their qualities, their etimologies, their choices, and all that is particular and remarkable by exposing them to the foil of the astronomical lens and the burning mirror. It also treats stony marine plants, crustaceans and seashells, either in their natural state, or in different degrees of Calcination and petrification. At the end, the manner of working all sorts of stones, and those of imitating them by the shortest and most perfect ways). For whatever reason, the books never had been published (Lualdi, 1996).

The cabinet was divided into three thematic groups: pétrifications (fossils), métaux (metals), and pierreries (stones), which comprised 24 collections. The collections were subdivided into classes. The term classes is used by Baillou in a sense different from Linné’s system and describes units. The earth pigment ochre, for example, was grouped with the pierreries (stones) and could be found under the class les terres des peintres (soil used by painters) which was part of the Collection: les terres (soils), les sables (sands), and les graviers (gravel), and another example of fossilized madrepore corals was grouped with the pétrifications (fossils) and could be found under the class of Madrepores petrifiés (fossil madrepore, coral), which was part of the Collection les plantes marines petrifiés (marine plant fossils).

The “Naturalien-Cabinet”

The location of Franz I. Stephan’s “Naturalien-Cabinet” is not exactly known. Likewise unknown is how long the natural history collections were stored at the “Kaiserhaus.” In 1752, Prince Johann Joseph Khevenhüller notes that he was allowed to visit the cabinet, which was only half finished at the time and was located close to the library (Riedl-Dorn, 1998, p. 15). The room he had in mind was situated in the right wing of the Hofbibliotheks Building and was the former reading room of the Austrian National Library. In a diary entry for 7 April 1755, he states that the emperor invited him to visit the “Naturalien-Cabinet” and that he spent some time there. Upon arrival of the collections from Florence, Jean de Baillou and his son started to organize the “Naturalien-Cabinet” and supplemented the collection with minerals from the treasury. The objects were arranged in large oak cabinets with glass doors. The structure followed the system Baillou had used in Florence. The emperor is said to have visited the cabinet almost daily.

In order to enlarge the collections, Franz I. Stephan sent out scientists to collect new objects. He also gave orders to the directors of his mines and the mining administration to deliver samples of special rocks and minerals to the imperial collections. Franz I. Stephan’s interest in natural science was mainly driven by economic reasons, especially to support dwindling mining activities (Riedl-Dorn, 2001). In 1751, the “hofmathematici,” Nagel, and Baillou traveled to the High Tatra Mountains (southern Poland) to collect minerals for the Vienna collection (Schönburg-Hartenstein, 1987). In 1754, the young “médecin hollandaise,” Nikolaus Joseph Jacquin, was sent to the Caribbean and South America, together with a gardener and two taxidermists. The Dutch-born Jacquin received precise instructions that were drafted by the emperor himself (Zedinger, 2009), describing what he and the other members of the expedition were to collect. This included living birds and quadrupeds—with the exception of carnivores—for the menagerie, flowers, woods, and other plants for the Dutch gardener, Adrian van Stekhoven (1705–1782), and stones, shells, and fossils for the collection of “M[onsieur] Baillou” (ASF, Segreteria Finanze Affari primo del 1788, Anni precedenti, 479: Toussain an Richecourt 4.11.1754, p. 1).

During the expedition, Jacquin not only collected minerals but also bought minerals and metals from all parts of the world. He was the first to bring platinum to Austria. In 1754, Baillou’s reputation was still held in such high regard that the cabinet secretary of Franz I. Stephan, Baron Francois-JosephToussaint (1689–1792), referred to the cabinet not as “cabinet de sa Majesté” but as the cabinet of M. Baillou. Also Jacquin sent his report, Memoire des Production naturelles pour sa Majesté Imperiale, to Baillou and not to the emperor. Under the item, “production naturelles,” Jacquin lists not only natural history objects but also ethnographical objects and coins that found entry into the collections of the “Mineralien-Cabinet.” After Jean de Baillou’s death in 1758, Jacquin continued to send reports to Baillou’s son, Luigi Balthasar (1731–1802), who had succeeded his father in accordance with the purchase contract as director of the Cabinet.

The Transfer of the Collections and Opening Them to the General Public

Luigi Balthasar, who together with his brother Joseph, was ennobled by Emperor Joseph II on 4 April 1766, was unable to properly manage the collections. After the death of her husband, Franz I. Stephan, in 1765, Empress Maria Theresia had the Naturalien-Cabinet transferred to a single exhibition room and an anteroom in the “Augustinergang” of the imperial palace. The same year, she handed over the collections to the state as public property and placed them under the administration of the “Oberstkämmereramt” (office of the High Chamberlain). In 1766, the famous gemstone bouquet and 57 pietra dura (an inlay technique using precisely cut stones to form an image; the stone pieces are usually much larger than those used for mosaics) from the “Kaiserhaus” in the Wallnerstrasse were transferred to the natural history cabinet (Fig. 9). The costs for the move were borne by the imperial household.

Figure 9.

Gemstone bouquet of Maria Theresia. The gemstone bouquet was a gift from Maria Theresia to her husband, Franz I. Stephan, and consists of 2102 diamonds and 761 colored stones; the leaves were made of silk. The bouquet is now part of the mineralogical collections of the museum.

Figure 9.

Gemstone bouquet of Maria Theresia. The gemstone bouquet was a gift from Maria Theresia to her husband, Franz I. Stephan, and consists of 2102 diamonds and 761 colored stones; the leaves were made of silk. The bouquet is now part of the mineralogical collections of the museum.

According to Fitzinger, in 1765, the “Naturalien-Cabinet” was opened to selected visitors (scientists and noblemen) twice a week; although no sources could be found to prove that claim. From 1769 onward, the cabinet was opened to artists and members of all classes, including women and children. The changes made to the cabinets were related to the Empress’s reorganization of the educational system, which made, among other things, the attendance of schools for children obligatory. Maria Theresia was very interested in enlarging the collection as well as the publication of a catalogue of the “Naturalien-Cabinet.” In 1773, Luigi Balthasar asked the Empress that the cabinet be closed for visitors so that he could write the inventory catalogue the Empress had requested, but he also stated that the mineral collection was smaller than the collections of other cabinets and that writing the catalogue was too expensive and would take too much time (Hassmann, 2015). Maria Theresia partly answered Baillou’s request and closed the cabinet to the general public. Two years later, the president of the “Hofkammer in Berg- und Münzwesen,” Count Franz Kolowrat-Novohradsky (1739–1802), recommended that given the bad condition of the collection and many errors in the inventory (Inventaire raisonné), Nicolaus Joseph von Jacquin, who was the first professor for mining and metallurgy at the newly founded mining academy at Schemnitz (Banská Štiavnica in the Slovak Republic) and who possessed a large mineral collection himself, be given the assignment of putting the collection in order and writing a catalogue (ÖstA/HHStA, OkäA Akten Serie B, Karton 4, CCC4), but to no avail. Luigi Balthhasar was once again tasked with the project. After a second negative report in 1776, the task was reassigned to the Transylvanian mineralogist and geologist, Ignaz von Born (1742–1791).

The First Printed Catalogue and Reorganization of the Collections

Born, who had received a three-year contract and was to be paid 2000 florin per annum, suggested that the collection inventory should follow the design of Jacquin’s “Flora Austriaca” (Hassmann, 2015). It was planned that the catalogue would be published in several parts with each part describing a single collection. In 1778, the first volume was published under the title, Index rerum naturalium Musaei Caesarei Vindobonensis Testacea. Vol. 1. The book was a description of the snails and shells collection and used the Linnean system. It was followed by an illustrated luxury edition, Musaei Caesarei Vindobonensis Testacea, quae jussu Mariae Theresiae disposiuit, two years later. The book’s title was the first instance in which the Latin designation “Musaei Caesarei Vindobonensis” or imperial museum was used for the Naturalien-Cabinet. It is also interesting to note that Born used the English, French, Latin, and German name in the objects description. One of the main points of contention between Kolowrat and Luigi Balthasar was that the latter had written the inventory only in French and not in the language of science—Latin—or in German. Born’s contract was extended for another three years in 1780. In 1787, Emperor Joseph II asked for a report about the changes and work done in the cabinet since the beginning of his regency in 1765. Ignaz von Born’s reply (ÖStA/HHStA, OKäA Akten Serie B, Karton 9, Nr 41 ex 1787) offers some interesting insights into the inner workings and history of the “Naturalien-Cabinet.” According to the report, it seems that Born not only took over the responsibility of cataloguing the collections from Luigi Balthasar but was also tasked by the “Oberstkämmerer” (High Chamberlain), Count Franz Xaver Orsini-Rosenberg (1723–1796), with furnishing a new second exhibition room for the cabinet, which he finished in 1780. The report also describes the acquisition of zeoliths and chalcedons from the German jewel trader, Pierre Laporterie, as well as the acquisition of stones and minerals from Joseph von Damm (ca. 1745–1790) for, at the time, the extremely large sum of 10,000 florins.

On 1 March 1780, Carl Haidinger was appointed assistant of Ignaz von Born. The report also shows that there had been a flourishing exchange of objects (mostly duplicates) between the various museums and cabinets since the 1780s. It’s also interesting to note that in 1785, a fund was created to increase the number of foreign minerals in the “Naturalien-Cabinet.” The cabinet employees’ wages are also listed in the report. Born’s wages, for instance, were almost as high as those of the cabinet director, Luigi Baillou, who received 3000 florins per year, and higher than those of the vice director, Abbé Stütz, who received 800 florins annually. For comparison, the curator, Megerle, received 350 florins per year. This fact alone shows the importance attached to Born and his work.

According to Carl Haidinger (Haidinger, 1782), the stones and minerals were arranged following the systematic order of Wallerius and Kronstädt, the conch collection and “rare” animal specimens following the systematic order of Linné, and finally, the zoophytes following the systematic order of Pallas. The most popular exhibition objects were stored in glass cabinets, and the less popular objects were kept in drawers beneath the cabinets. The objects in the drawers were arranged by systematic order.

After the physikalisches cabinet was closed in 1791, a third exhibition room was added to the “Naturalien-Cabinet.” The room was furnished by Abbé Stütz following plans made by Ignaz von Born before his death in 1791. A fourth room that was already part of the “Naturalien-Cabinet” was refurbished and housed the pietra dura and the gemstone bouquet. The gemstone bouquet (Fig. 9) was a gift from Empress Maria Theresia to her husband Franz I. Stephan and consists of 2102 diamonds and 761 precious stones that were arranged in a way to imitate a real flower bouquet, with the leaves made of silk (Niedermayer, 1984).

Since 1779, the cabinet was opened to the public on Mondays, and in 1793, the opening day was changed from Monday to Tuesday. The mosaic room was accessible only by prior appointment. Three years later, the public was allowed to visit the cabinets Monday through Friday until noon, except for holidays, on which the cabinet was closed (Hassmann, 2015).

“Thiercabinet” (Animal Cabinet)

From 1796 to 1802, two natural history cabinets were located in the building of the imperial library at the Josephsplatz: (1) the “Mineralien-Cabinet” (Mineral Cabinet) was in state ownership, and (2) the “k.k. Physikalisches-Astronomisches, Kunst-und Natur-Thier-Cabinet” was owned by the imperial household. Abbé Simon Eberle (1756–1827), who was appointed director of the Physikalisches Cabinet in 1795, suggested that since zoological specimens were already stored on the premises of the “Physikalisches Cabinet,” the collections of astronomy and physical instruments and the animal collections should be united. One year later, the emperor had the antler and horn collection moved from Kaiserebersdorf (today part of Vienna’s 11th district) castle to the Hofburg. This mix between the “Physikalisches Cabinet” (Physical Cabinet) and the future “Thiercabinet” (Animal Cabinet) was to be housed in the wing of the imperial library adjacent to the “Augustinergang.” To accomplish this move, the apartments of the prefect of the library and of higher positioned civil servants had to be vacated. The rooms in the narrow and relatively tall building received little light and were not really suitable for a museum. The goal of the new museum with the convoluted name, “k.k. Physikalisches-Astronomisches, Kunst- und Natur-Thier-Cabinet” (Imperial Physical-Astronomy, Art, Nature and Animal Cabinet) was to promote education and to allow the public access to the private collections of the imperial household. Eberle had made several very detailed and expensive dioramas showing the animals in their natural habitat. The concept for the exhibition was mostly directed toward success with the public. Some macabre details certainly contributed to this kind of success. Stuffed human bodies, especially Africans, were included with the animals in their appropriate habitat. The humans used for Eberle’s exhibit had all died a natural death. The display of stuffed humans, considered as barbarian today, was perfectly in line with the time’s taste and by no means a peculiarity of Eberle’s exhibition. We find the same in museums and cabinets all over Europe, e.g., Paris, Torino, and other places as well (Riedl-Dorn, 1998). Shortly after his appointment as new director of the “Vereinigte k.k. Naturalien-Cabinete”(United Natural History Cabinets) in 1806, Carl von Schreibers had the stuffed humans removed from the exhibit and moved to the attic. The bodies were destroyed by fire in 1848. Due to inappropriate use of funds, Eberle was forced into early retirement in 1802.

“Vereinigte k.k. Naturalien-Cabinete” (United Imperial and Royal Natural History Cabinet)

In 1797, the assistant of Luigi Balthasar Baillou, Abbé Andreas Stütz, was promoted to second director of the “Mineralien-Cabinet.” After Eberle’s premature retirement, Stütz was put in charge of the “k.k. Physikalisches-Astronomisches, Kunst- und Natur-Thier-Cabinet.” Luigi Balthasar Baillou died on 23 February 1802. His son Josef refused the hereditary directorate and thus allowed the merging of the two natural history collections into a single one. The new cabinet was aptly named, “Vereinigtes Naturalien- und Physikalisches-Astronomisches Cabinet” (United Natural History- and Physical-Astronomical Cabinet). Stütz soon began to reorganize the collections and the exhibition based on scientific criteria; with the exception of crabs and starfish for which he used the system developed by Johan Christian Fabricius (1745–1808) and the system developed by Johann Friedrich Wilhelm Herbst (1743–1807), Stütz used Linnéan taxonomy for the crustaceans, conches, and fossils.

Stütz died before he was able to finish his work. After Stütz’s early demise in 1806, the Emperor Franz I (II HRR) ordered a restructuring of the collections, and the cabinets were once again split into a “Physikalisches-Astronomisches Cabinet” (Physical-Astronomical Cabinet) and a “Naturalien-Cabinet” (Natural History Cabinet). The zoological and botanical collections were now housed at the Josephsplatz, part of the imperial palace. In 1810, the united natural history cabinets were divided according to the three kingdoms of nature into botanical, zoological, and mineralogical cabinets. Emperor Franz I (II HRR) himself had laid the foundation of the botanical cabinet in 1803. Franz‘s personal herbarium was integrated into the botanical cabinet in 1808. The following year, the emperor handed over the “Tier und Pflanzenkabinett” to the state.

Carl Franz Anton von Schreibers (1775–1852), a doctor of medicine by profession but well trained in other natural sciences, followed Stütz as director of the “Vereinigte k.k. Naturalien-Cabinete” in 1806. The new director was tasked with modernizing the zoological exhibition according to the newest scientific and educational knowledge of the time and to create an organizational and working plan for the rationalization of the scientific administration for each collection. He was also charged with enlarging the collections while adhering to the systematic order of the cabinets. Until his time, mineralogical and geological objects had been dominant in number by far. The modernization of the zoology exhibition included the creation of object labels for the hitherto unlabeled objects and specimens; the labels stated the scientific name, place of origin, and general distribution of the animals. Schreibers interpreted the task he was given as an order to transform the cabinets into a scientific institution that would, among other purposes, serve the education of future scientists.

He assembled a number of eminent scientists as curators, such as the physician and helminthologist, Johann Gottfried Bremser (1767–1827), who collected ~60,000 specimens of intestinal worms; Leopold Trattinick (1764–1849), a botanist and mycologist, who was made curator of the herbarium, which was founded in 1807; Friedrich Mohs (1773– 1839), who was professor of mineralogy at the time and was responsible for the rearrangement of the minerals collection, for which he used his own system; he separated the mineralogical objects from the geological objects. The latter were arranged and cared for by Paul Maria Joseph Partsch (1791–1856), who was the author of the first geological map of Austria. The mineralogical cabinet also included a center for research on meteorites, a favorite subject of study by Schreibers. The Saxonian physicist, Ernst Florens Friedrich Chladni (1756–1827), and the Vienna industrialist and scientist, Alois Beckh von Widmanstätten (1753–1849), were often seen as visitors at the meteorite collection (see below).

Due to the emperor’s interest in plants and horticulture, several expeditions were launched to collect new plants and animals as well as minerals. Among these, the most outstanding was the expedition in 1817 to Brazil, accompanying archduchess Maria Leopoldina (1792–1826) following her marriage to Dom Pedro de Alcântara (1798–1834), the later emperor of Brazil. Before the expedition departed Austria, every step was carefully planned, and the scientists received special instructions to ensure the greatest possible success. The scientific part of the instructions was composed by Schreibers, while the Lord Chancellor Klemens Wenzel Lothar von Metternich (1773–1859), who took great interest in the development of natural history in general, had contributed to the planning of equipment, routes, etc. Many famous scientists were associated with the expedition: the botanist and mineralogist, Johann Emmanuel Pohl (1782–1834); the botanist and entomologist, Johann Christian Mikan (1769–1844); the horticulturist, Heinrich Wilhelm Schott (1794–1865); the botanist, Carl Philip von Martius (1794–1868); the zoologist, Johann Baptist von Spix (1781–1826); and above all, the zoologist and taxidermist, Johann Natterer (1787–1843), who remained in Brazil until 1836. The endeavor was not only accompanied by scientists but also by artists, such as the landscape painter, Thomas Ender (1793–1875), and the botanical illustrator, Johann Buchberger (+1821). To exhibit all the specimens and other items that were brought home, a special Brazilian museum, “Brasilianum,” with nearly 133,000 single objects distributed in 13 rooms, was created. Von Schreibers’ request for a new building to house the large collections was denied, and the objects had to be included in the already crowded “Naturalien-Cabinet.”

The revolution of 1848 also affected the natural history collection. Von Schreibers’ private quarters and parts of the collections were destroyed when the last canon shot fired during the revolution hit the “Augustinertrakt” of the imperial palace. Von Schreibers never fully recovered from that loss. He retired one year before his death in 1852. In 1851, the “Vereinigte k.k. Naturalien-Cabinete” was divided into three independent cabinets: the “k.k. Botanisches Cabinet” (Imperial and Royal Botanical Cabinet); the “k.k. Zoologisches Cabinet” (Imperial and Royal Zoological Cabinet); and the “k.k. Mineralogisches Hof-Cabinet” (Imperial and Royal Mineralogical Court-Cabinet). The formal separation into five departments happened in 1876 and included a separated geological department.

ON THE EARLY HISTORY AND IMPORTANCE OF THE METEORITE COLLECTION AT THE NATURAL HISTORY MUSEUM VIENNA

Meteorite Collection: Background

The Natural History Museum Vienna (NHMW) possesses one of the largest and most important meteorite collections in the world. In addition, the NHMW contains by far the largest meteorite display in the world. The display in Hall 5 of the museum, which consists of ~1100 specimens comprising 650 different meteorites, cannot be matched anywhere else in the world (Fig. 10). Of special note are the many well-documented historical meteorite falls, most of which are presented to the public and which add to the collection’s richness and uniqueness. Moreover, the Vienna collection is the oldest, worldwide, of its kind. The origin of the collection goes back to the second half of the eighteenth century. Meteorites were already collected in Vienna before the scientific community began to accept the existence of extraterrestrial stones. Although the early curators regarded meteorites as earthly phenomena and did not believe in their extraterrestrial origin, they kept these objects in the natural history collection. The rise of the Vienna collection to its present-day historical and scientific importance is attributed to curators Carl von Schreibers, Paul Maria Partsch, Moritz Hörnes, Gustav Tschermak, Aristides Brezina, and Friedrich Berwerth. They all were successful curators as well as being dedicated scientists in the field of meteoritics. Due to the efforts of Schreibers and his successors, the Vienna collection became the most important one in the course of the nineteenth century (Brandstätter, 2006). The collection also played an important role in the history of meteorite studies and became one of the centers of the newly established science of meteoritics. However, the breakdown of the Austro-Hungarian monarchy and the outbreak of the First World War brought all collection-related activities to an abrupt halt. In the following years until World War II, only modest activities took place. Due to the precaution of the curators of that time, the meteorite collection had not been subject to any significant damage or loss during World War II and the years after. At present, the collection comprises more than 7000 catalogued specimens from more than 2400 different localities from 96 countries and lies in third place behind the collections of the Smithsonian Institution in Washington, D.C. (USA), and the National Institute of Polar Research in Tokyo (Japan).

Figure 10.

View of the meteorite collection in Hall 5 of the Natural History Museum, Vienna. Approximately 1100 meteorite specimens from 650 localities are on display. In 2012, the meteorite hall was completely renovated and modernized. The cabinets in the middle of the hall contain the systematic collection, and they are surrounded by thematic stations along the walls.

Figure 10.

View of the meteorite collection in Hall 5 of the Natural History Museum, Vienna. Approximately 1100 meteorite specimens from 650 localities are on display. In 2012, the meteorite hall was completely renovated and modernized. The cabinets in the middle of the hall contain the systematic collection, and they are surrounded by thematic stations along the walls.

Here we give an overview on the early history of the collection from the beginning to the middle of the nineteenth century. Above all, this historical account is dominated by renowned personalities. A central figure is Carl von Schreibers, who is regarded as the founder of meteoritic science in Vienna. Furthermore, a few selected examples of meteorite acquisitions that entered the Vienna collection are used to illustrate their importance for the history and/or scientific development of meteorite studies.

The Beginning

The First Meteorites

In 1751, after the appearance of a fire ball, which divided into two parts with detonations, two masses of iron fell from the sky at Hraschina near Zagreb, Croatia. Emperor Franz I ordered a report on the fall from the episcopal syndicate in Zagreb. The fall report, written in Latin, contained the sworn statements of witnesses from different localities who said that they saw “a brilliant ball of fire that split into two balls linked by fiery chains.” In the same year, the fall protocol and the iron masses of 39 kg and 9 kg, respectively, were at first sent to Bratislava, where the emperor met with Hungarian authorities. There and earlier in Zagreb, the mass of the smaller iron piece was repeatedly reduced by sampling. Finally, the entire piece was lost, and nothing is known about any remains (Berwerth, 1918). The larger piece was then sent to Vienna together with the fall report and kept in the “k.k. Schatzkammer” (Imperial and Royal Treasury).

The noted earth scientist, Born, was able to engender a steady flow of mineralogical samples to the Vienna collection. Born also organized the transfer of the Hraschina iron and another meteorite previously kept in the Imperial Treasury to the Natural History Cabinet in 1778. In this way, the first two meteorites, Hraschina and Tabor (stone, fall 1753, Bohemia), entered the collection (Fitzinger, 1856). The 39 kg Hraschina iron (Fig. 11) is regarded as the founding piece of the Vienna collection.

Figure 11.

The meteorite Hraschina; main piece of the fall of 1751 near Zagreb, Croatia. In 1778, the 39 kg iron mass was transferred from the Imperial Treasury to the Natural History Cabinet and became the founding object of the Vienna meteorite collection. Inventory no. A2.

Figure 11.

The meteorite Hraschina; main piece of the fall of 1751 near Zagreb, Croatia. In 1778, the 39 kg iron mass was transferred from the Imperial Treasury to the Natural History Cabinet and became the founding object of the Vienna meteorite collection. Inventory no. A2.

After the death of the second director, L.B. Baillou in 1802, Stütz became sole director of the Natural History Cabinet. During his directorship, the number of acquired meteorites increased to a total of seven pieces: Hraschina (Croatia, 39 kg); Krasnojarsk (Russia, 2.5 kg); Tabor (Czech Republic, 2.7 kg); Steinbach (Germany, 1.1 kg), Eichstädt (Germany, 126 g); L’Aigle (France, 1.1 kg); and Mauerkirchen (Austria, 429 g). Stütz also produced the first handwritten catalogue of the natural history collection, the so-called “Catalogus Stützianus” (Fig. 12).

Figure 12.

“Catalogus Stützianus,” the seven-volume catalogue of the natural history collection, produced by Abott Andreas Xavier Stütz (1747–1806). In 1806, the handwritten catalogue contained the entries for seven different meteorites.

Figure 12.

“Catalogus Stützianus,” the seven-volume catalogue of the natural history collection, produced by Abott Andreas Xavier Stütz (1747–1806). In 1806, the handwritten catalogue contained the entries for seven different meteorites.

Güssmann’s Hypothesis on the Origin of the Pallas Iron and the Hraschina Iron

A decade before Ernst Florens Friedrich Chladni (1756–1827) published his seminal treatise (Chladni, 1794), in which he linked meteorite falls with fireballs and concluded that meteorites are of extraterrestrial origin, Franz Güssmann (1741–1806) published a systematic mineralogy text in Latin entitled, Lithophylacium Mitisianum (Güssmann, 1785). In the chapter, “Ferrum Nativum” (p. 127–131), he discussed the origin of the so-called Pallas iron and of the Harschina iron meteorite. Güssmann, a Viennese mathematician and professor of natural sciences, believed that both iron masses had fallen from the sky, but he concluded that they had originated on the Earth from where they were launched into the sky by enormous “electric fires” (Güssmann, 1785). Thus, he hypothesized, just as the Jesuit, Troili, had argued in a publication two decades before on the fall the Albareto stone (Troili, 1766), that the Hraschina meteorite was thrown skyward by a “terrestrial force.”

In a later treatise (Güssmann, 1803), the author mentioned in a note that in 1780, he had tried to convince Ignaz von Born that Hraschina indeed fell from the sky, and that he also had tried to explain to him his ideas on the origin of the iron masses as published later in 1785. Apparently, Güssmann’s attempts were not successful, and despite being a renowned person in the scientific circles in Vienna, his discussion of native irons seems to have passed unnoticed (Berwerth, 1918; Marvin, 2006).

Stütz’s Disbelief of Stones That “Allegedly Fell from the Sky”

In 1789–1790, a collection of papers mainly related to mining topics (editors I. v. Born and F.W.H. v. Trebra) appeared as “Bergbaukunde” in a two-volume publication. Therein, Stütz published an article entitled, “On Some Stones Allegedly Fallen from Heaven,” with the purpose of discrediting the idea that stones could fall from the sky. In his discussion, Stütz (1790) referred to the three witnessed meteorite falls—Eichstädt (Bavaria, 1785), Tabor (Bohemia, 1753), and Hraschina (Croatia, 1751). From the Eichstädt stone, Stütz had received a small specimen from his friend, Baron von Hompesch of Eichstädt, together with a report on how the stone was found (Fig. 13). He described the specimen as ash-gray sandstone, containing small grains of native iron with, in places, iron ochre scattered through it. He further remarked that the whole mass showed evidence for an interaction with fire. Stütz then cited his predecessor, Ignaz von Born, who had described in a catalogue note the Tabor stone (Fig. 14) as consisting of refractory iron intermingled with a greenish stone and having a slaggy surface and then had remarked “… from which some credulous people claim that the stone had fallen from heaven during a thunderstorm.” The reports from Eichstädt and Tabor reminded Stütz of the Hraschina iron mass in the Natural History Cabinet that also was said to have fallen from Heaven. He then compared Eichstädt and Hraschina and remarked that the effect of fire was even more pronounced on the latter one. On Hraschina, he also recognized the presence of “spherical depressions” and their similarity to the ones observed on the metal of the Pallas iron. After retrieving the fall report that had been sent with the iron mass to Vienna, he translated the original text from Latin into German. In his conclusion, he said that new writings on “electricity and thunder” that recently had come into his hands motivated him not to simply deny witnessed phenomena that one cannot explain. In particular, he referred to the experiments of a certain “Mr. Komus,” who had reduced iron oxides to metal by electric discharges. Stütz then reasoned that lightning, that is an electric stroke on a large scale, might have produced the Hraschina metal by a huge discharge from clouds. He further argued that his hypothesis would give an explanation for “allegedly fallen stones” without the need to regard the reports on these witnessed phenomena as fairy tales.

Figure 13.

The largest still-existing fragment of the stone that fell in 1785 at Eichstädt, Bavaria. As one of the earliest meteorite acquisitions, the 122 g specimen is listed in the “Catalogus Stützianus” (1806) and depicted in the book by Schreibers (1820; see also Fig. 20). Inventory no. A14.

Figure 13.

The largest still-existing fragment of the stone that fell in 1785 at Eichstädt, Bavaria. As one of the earliest meteorite acquisitions, the 122 g specimen is listed in the “Catalogus Stützianus” (1806) and depicted in the book by Schreibers (1820; see also Fig. 20). Inventory no. A14.

Figure 14.

The Tabor stony meteorite. Largest single stone (weighing 2.8 kg) from the meteorite shower that occurred in 1753 in Bohemia, Czech Republic. In 1778, it was transferred together with the Hraschina iron from the Imperial Treasury to the Natural History Cabinet. It is listed in the “Catalogus Stützianus” (1806) and depicted in the book of Schreibers (1820; see also Fig. 20). Inventory no. A10.

Figure 14.

The Tabor stony meteorite. Largest single stone (weighing 2.8 kg) from the meteorite shower that occurred in 1753 in Bohemia, Czech Republic. In 1778, it was transferred together with the Hraschina iron from the Imperial Treasury to the Natural History Cabinet. It is listed in the “Catalogus Stützianus” (1806) and depicted in the book of Schreibers (1820; see also Fig. 20). Inventory no. A10.

Interestingly, Berwerth (1918, p. 722) stated in a remark that Stütz had changed his opinion on fire balls after the Chladni’s treatise of 1794 and that Stütz then had fully accepted Chladni’s theory without any restrictions.

The Era of Schreibers

Carl von Schreibers and the Reorganization of the Natural History Cabinet

In 1802, the Natural History Cabinet and the Physical-Astronomical Cabinet and Nature-Animal Cabinet, both situated at different locations at the imperial castle, were combined to form the “United Natural History, Physical- and Astronomical Cabinet.” Immediately after the death of Stütz in 1806, the “United Natural History, Physical- and Astronomical Cabinet” was divided again with the “United Imperial and Royal Natural History Cabinet” as a separate unit of collections, headed by the newly appointed director Carl von Schreibers (1775–1852) (Fig. 15). The main task of Schreibers was, at the request of the emperor, to reorganize the natural history collections, particularly the zoological and botanical specimens, using the Paris Natural History Museum as a model. Schreibers succeeded also in raising the annual purchase budget for the mineral cabinet significantly (Fitzinger, 1868a). The inventory of the earth science collection increased within a few years by several thousand specimens. In particular, a series of interesting meteorites were acquired, and their number in the natural history collection grew steadily. Acting on Schreibers’ proposal, a separate display room devoted to meteorites was arranged, and the foundation for today’s collection of the natural history museum was thus laid.

Figure 15.

Carl von Schreibers (1775–1852), director of the United Imperial and Royal Natural History Cabinet from 1806 to 1851. He is regarded as the founder of meteoritic science in Vienna. For the first time, Schreibers also arranged a separate display room devoted to meteorites.

Figure 15.

Carl von Schreibers (1775–1852), director of the United Imperial and Royal Natural History Cabinet from 1806 to 1851. He is regarded as the founder of meteoritic science in Vienna. For the first time, Schreibers also arranged a separate display room devoted to meteorites.

The Fall of the Stannern Meteorite

On 22 May 1808, after explosions were heard, a shower of stones fell in the area of Stonarov (Stannern) in today’s Czech Republic (Fig. 16). On 25 May, a Viennese citizen who by chance had gotten a fragment of one of the fallen stones into his hands visited the Natural History Cabinet and presented his acquisition to Schreibers. On the following day, Schreibers traveled to Stonarov as a member of an imperial commission (together with Alois Beck von Widmanstätten) to investigate the fall. From there, he brought to Vienna 61 stones comprising complete individual stones (i.e., single stones that are fully covered by fusion crust) and fragments, totaling ~15 kg. In the same year, he published a detailed report about the Stannern meteorite shower (Schreibers, 1808). In his concluding remarks, Schreibers mentioned that the presence of a black nonmagnetic fusion crust and the general appearance of the Stannern stones had convinced him about their extraterrestrial origin, although all other stony meteorites known at that time had a dull and magnetic fusion crust. In addition, he noted that Stannern did not contain any grains of nickel iron. It turned out that Stannern was completely different than all stony meteorites previously known. At the request of Schreibers, the Viennese apothecary, Josef Moser, performed a chemical study of Stannern and published a bulk analysis (Moser, 1808) that yielded significantly higher contents of calcium and aluminum than the other stony meteorites analyzed prior to that. The French chemist, Louis Nicolas Vauquelin (1763–1829), made another chemical analysis of a Stannern sample. Vauquelin (1809) confirmed Moser’s results and classified Stannern as a new type of stony meteorites, which Aristides Brezina (1848–1909), a later curator of the Vienna collection, named “achondrites” (Brezina, 1885). Schreibers (1809) published a second detailed paper about the Stannern stones in which he focused on exterior features, such as shape, surface, and fusion crust.

Figure 16.

One of the largest stones of the Stannern meteorite shower, weighing ~2 kg. It was collected by Carl von Schreibers a few days after the fall event near Stonarov, Czech Republic, in 1808. The investigations of Schreibers (1808), Moser (1808), and Vauquelin (1809) revealed that Stannern was a new type of stony meteorite; later this meteorite type was named achondrites. Inventory no. A21.

Figure 16.

One of the largest stones of the Stannern meteorite shower, weighing ~2 kg. It was collected by Carl von Schreibers a few days after the fall event near Stonarov, Czech Republic, in 1808. The investigations of Schreibers (1808), Moser (1808), and Vauquelin (1809) revealed that Stannern was a new type of stony meteorite; later this meteorite type was named achondrites. Inventory no. A21.

The Discovery of the Widmanstätten Pattern

In 1808, Alois Beck von Widmanstätten (1754–1849), director of the so-called “Kaiserliches Fabriksprodukten-Kabinett” (Imperial Industrial Products Cabinet) obtained from his close friend, Schreibers, a slab of the Hraschina iron for “technical” experiments (Berwerth, 1918). In the course of heating experiments that Widmanstätten had performed on that slab to study the evolving tempering colors, he discovered an unusual pattern of crisscrossing lamellae (Fig. 17). Soon he found out that etching with nitric acid revealed the same pattern in a much more pronounced way. Because the depth of the etched figures depended on the duration of the etching process, he had the idea to ink the etched surface and to print it on paper (Schreibers, 1820). Doing so, he was able to display minute details of the pattern at a full scale. In addition to Hraschina, he then printed the pattern of several other irons, such as Toluca (in 1810), Elbogen (in 1812), and Lenarto (in 1815), all of which are included in Schreibers book from 1820 (Fig. 18). Although Widmanstätten never published his prints, he showed them from the very beginning of his discovery to his Viennese colleagues and to visitors of the Natural History Cabinet (e.g., to Chladni in 1812). Schreibers himself also distributed the findings of Widmanstätten within the scientific community by oral communication and written notes (Schreibers, 1820). Thus, many contemporary scientists began to name the pattern “Widmanstätten figures,” a term that has dominated the meteorite literature ever since. In 1939, it turned out that a few years before Widmanstätten, the English geologist, G. Thompson (1761–1806), had discovered a similar pattern on an etched slab of the Pallas iron; this finding had been described in an apparently unnoticed publication (Marvin, 2006). Although Thompson had clear priority of publication, his discovery completely failed to attract the attraction of his contemporaries and, thus, did not contribute to the advancement of science. In contrast, Widmannstätten gained recognition within the scientific community because of the early and widespread distribution of his prints (e.g., Paneth, 1960).

Figure 17.

One of the original platelets of the Hraschina iron meteorite. In 1808, Alois Beck von Widmanstätten used these platelets for his flame-heating experiments. In the course of these experiments, he discovered the pattern that is characteristic for most iron meteorites and that ever since bears his name.

Figure 17.

One of the original platelets of the Hraschina iron meteorite. In 1808, Alois Beck von Widmanstätten used these platelets for his flame-heating experiments. In the course of these experiments, he discovered the pattern that is characteristic for most iron meteorites and that ever since bears his name.

Figure 18.

Plate VIII of Schreibers’ book from 1820, depicting a color print of the pallasite Krasnojarsk (Sibirien) (top); and early prints of the irons; Toluca (Mexico) (left); Lenarto (Lénarto) (bottom); and Hraschina (Agram) (right).

Figure 18.

Plate VIII of Schreibers’ book from 1820, depicting a color print of the pallasite Krasnojarsk (Sibirien) (top); and early prints of the irons; Toluca (Mexico) (left); Lenarto (Lénarto) (bottom); and Hraschina (Agram) (right).

Chladni and the Vienna Collection

In his landmark paper from 1794, the famous physicist, Chladni, compiled 18 reports of witnessed falls, spanning a wide range, from ancient times to the eighteenth century (Marvin, 2006). Among these 18 witnessed events are seven observed falls of which a specimen still exists (Hoppe, 1982), including Eichstädt, Tabor, and Hraschina. For the discussion of these three meteorite falls, Chladni referred to the description of Stütz (1790). In particular, he made extensive use of Stütz’s German translation of the fall report of the Hraschina iron mass. The continuous activities and efforts of Schreibers on meteorite issues and the availability of meteorites at the Natural History Cabinet prompted Chladni to come to Vienna in 1812. The main purpose of his visit was to study the Vienna meteorite collection and to make preparations for his second major publication on meteorites (Berwerth, 1918). In 1819, he again came to Vienna to finish the treatise, Über Feuer-Meteore und über die mit denselben herabgefallenen Massen (Chladni, 1819), with an appendix written by Schreibers (1819) listing 36 different meteorites for the Vienna collection. One year later, an illustrated meteorite book (Schreibers, 1820) was published as a separate appendix to the book by Chladni mentioned above (Figs. 19 and 20).

Figure 19.

Title page of Schreibers’ book from 1820 entitled, Contributions to the History and Knowledge of Meteoritic Stone and Iron Masses and of the Phenomena That Usually Accompany Their Fall. The lower part of the title page depicts three polished and etched objects (one ring and two cubes) made from the Elbogen iron mass.

Figure 19.

Title page of Schreibers’ book from 1820 entitled, Contributions to the History and Knowledge of Meteoritic Stone and Iron Masses and of the Phenomena That Usually Accompany Their Fall. The lower part of the title page depicts three polished and etched objects (one ring and two cubes) made from the Elbogen iron mass.

Figure 20.

Plate II of Schreibers’ book from 1820, depicting specimens of the historical important stony meteorites: Tabor (top), Eichstädt (left), L’Aigle (bottom), and Siena (right).

Figure 20.

Plate II of Schreibers’ book from 1820, depicting specimens of the historical important stony meteorites: Tabor (top), Eichstädt (left), L’Aigle (bottom), and Siena (right).

Paul Partsch

Paul Maria Joseph Partsch (1791–1856) was educated in philosophy, law, and natural history at the University of Vienna. In 1816, he came into contact with the mineral cabinet via the curator, Abbot Rochus Schüch (1788–1844) (Fitzinger, 1868b), and worked as a voluntary clerk at the imperial natural history collection until 1824. Partsch worked intently on improving his mineralogical training, traveled for more than ten years throughout Europe meeting the foremost European mineralogists, and wrote reports on geological matters for different imperial commissions. Several attempts by Schreibers to secure the post of curator then becoming vacant for Partsch were without success because of the intrigues of the all-powerful State Counsellor Freiherr von Stifft (Fitzinger, 1868b). Finally, in 1835, the state counsellor’s intrigues came to an end with the death of Emperor Franz I (II HRR).

The Continuous Growth of the Collection

In 1827, the famous mineral collection of the merchant, Jacob Friedrich van der Nüll (1750–1823), within which were a number of meteorites, was purchased for the mineral cabinet. The collection had been revised and described by Friedrich Mohs (1773–1839), one of the most respected mineralogists in Europe at that time. From 1827 onward, Partsch assisted Mohs with the task of reorganizing the mineral collection in the mineral cabinet and also gave a description of this revised collection. In 1835, Mohs left Vienna to take a position at what is today’s Mining University in Leoben. At the same time, Partsch was appointed custodian of the mineral cabinet. Eight years later, he published (Partsch, 1843) a detailed description of the meteorites in the imperial mineral cabinet (Fig. 21). With this book, Partsch appears to have been the first curator to publish a complete list of the meteorites in a museum collection (Burke, 1986). Partsch wrote, in 1843, that the Vienna collection included 94 localities with 258 specimens. The localities consisted of 69 “stones” and 25 “irons,” whereas the “iron” specimens comprised iron and stony iron meteorites. Some of the meteorite acquisitions were gifts, whereas the majority were acquired by purchase and exchange. In particular, the practice of Partsch and the later custodians to actively encourage collectors and dealers to propose exchanges was the major reason why the Vienna meteorite collection became the largest and most extensive in the course of the nineteenth century (Burke, 1986).

Figure 21.

Title page (right) of Partsch’s 1843 publication, which appears to be the first printed meteorite catalogue of a museum collection. On the left, the etched surface of a plate of the Lenarto iron with a pronounced Widmanstätten pattern is depicted.

Figure 21.

Title page (right) of Partsch’s 1843 publication, which appears to be the first printed meteorite catalogue of a museum collection. On the left, the etched surface of a plate of the Lenarto iron with a pronounced Widmanstätten pattern is depicted.

The Collection during the Revolutionary Year 1848 and After

In October 1848 of the so-called revolutionary year, the natural history cabinets suffered painful losses when portions of the collections and the depots in the attic of the imperial library were set on fire through artillery shelling. In particular, the precious private library of Schreibers and many of his scientific notes were lost in the fire, although the mineral cabinet itself was saved from destruction. A few days before the fire, Partsch had begun to save the most valuable specimens of minerals and meteorites by transferring them to other depots, including his own apartment (Hamann, 1976). Schreibers, who was devastated to see part of his life’s work go up in flames, retired at the end of 1851 and died a few months later in May 1852 (Scholler, 1953). Unfortunately, Partsch survived Schreibers by only four years. Immediately after Schreibers’ retirement, an administrative separation of the natural history cabinet into three individual “Imperial Royal” court cabinets took place, and Partsch became director of the mineral cabinet and held this position until 1856.

The death of Schreibers marks the end of an era that laid the foundation for two major developments of the meteorite collection in the second half of the nineteenth century. On the one hand, the collection grew very quickly under his successors, thus placing the Vienna collection into the forefront of the great European museum collections. On the other hand, Schreibers initiated the scientific investigation of meteorites at the NHMW. In the decades after Schreibers death, renowned personalities, such as Gustav Tschermak (1836–1927), Aristides Brezina (1848–1909), and Friedrich Berwerth (1850–1918) made significant contributions to the advancement of the emerging scientific discipline of meteoritics.

PALEONTOLOGICAL COLLECTIONS AND THE DAWN OF EVOLUTIONARY SPECIES CONCEPTS

Of the ~30 million specimens housed by the Natural History Museum Vienna, ~10% of the objects are curated by the scientists of the Geological-Paleontological Department. Only a small part of the huge paleontological collection is displayed in the five public galleries, which combine modern scientific contents with the historical architecture. While the galleries attract visitors with eye-catchers, such as a true-to-life animatronics model of an Allosaurus, the “real” treasures are often stored in the scientific collection; these comprise various systematic collections with thousands of type specimens along with large collections devoted to regional geology and stratigraphy.

Like the museum’s architecture, the scientific collections were strongly influenced by the history of the Habsburg Monarchy. Previously, in 1750, Emperor Franz Stephan of Lorraine (Franz I. Stephan) (1708–1765), husband of Empress Maria Theresia (1717–1780), laid the cornerstone for the Vienna collections. As mentioned above, he bought the famous “museo” of Jean de Baillou, who was the general manager of the Medici gallery in Florence and of the gardens and mines in Tuscany. The collection was one of the largest of its time, consisting of ~30,000 objects, such as minerals, molluscs, corals, and fossils (Riedl-Dorn, 1998). In Vienna, the collection was displayed in a room of the Augustine Tract of the Hofburg Palace, and Baillou was named the managing director of this new “Naturalien Cabinet” (Natural History Cabinet). During the next decades, the collections were repeatedly reorganized and renamed (see above and Riedl-Dorn, 1998, 2000, for details).

The scientific upheaval of the Age of Enlightenment (ca. 1715–1798) was soon reflected in the structures of the collections as well. The idea of a “natural system” became common knowledge, and consequently, Ignaz von Born (1742–1791) rearranged the imperial collections from 1778 to 1780 according to the newest scientific standards. He established the systems of the Swedish botanist and zoologist, Carl Linnaeus (1707–1778), and the German natural scientist, Peter Simon Pallas (1741–1811), for displaying the invertebrates. The systems of the Swedish mineralogists, Johan Gottschalk Wallerius (1709–1785) and Axel Frederic von Cronstedt (1722–1765), were used to systematically structure the mineralogical collection (Fitzinger, 1856). Espousing such systems, however, raises the quest for completeness, e.g., to acquire a specimen of each kind of minerals, fossils, and living organisms.

Since then, the collections of the museum were greatly enlarged by numerous expeditions and collecting campaigns. The targets of many of these expeditions were exotic animals and plants, while paleontological objects were welcome but subordinate. It was only in the early nineteenth century that the paleontological collections were—literally and figuratively speaking—systematically enlarged. Internationalization and diversification became the focus of the collection strategy. These goals were achieved by intense purchasing from private collectors and especially from market-dominating professional sellers such as the “Heidelberger Mineralien-Comptoir,” the “Freyberger Mineralien Comptoir,” and the “Mineralien-Geschäft von Krantz.” Large collections arrived in Vienna also as donations as well as by exchange with or purchase from other important institutions, such as the Leverian Museum in London (1807) and the Musée d’Histoire Naturelle in Paris (1827). Therefore, the Vienna collection was soon representing all localities and taxonomic groups, which were “en-vogue” at that time.

The next major change in collection strategy, coinciding with the step into modern science, occurred during the mid-nineteenth century. The “Gründerzeit”—a time of industrialization and urbanism between the 1840s and 1870s—began to reshape the cities of the Austrian Empire. Vienna, as its capitol, saw an enormous building activity. This required new outcrops for building stones and clay pits for millions of bricks—all leading to a renaissance of fossil collecting and paleontology. Geology became established as an important science, and geologists were recognized to be of tremendous economic importance in terms of exploration, construction work, and even water supply. The famous Baden Tegel, a Middle Miocene green-blue clay with a rich marine fauna, was intensively exploited (Fig. 22). The slightly younger Late Miocene Inzersdorf Tegel, with abundant endemic lake molluscs, was used in huge quantities as well. Even more prominent in the imperial architecture were Middle Miocene corallinacean limestones, quarried in numerous outcrops in the vicinity of Vienna and near the border to Hungary (Kieslinger, 1972). Geologists of the Natural History Museum began to buy the excellently preserved and enormously diverse fossils from local workers (Hoernes, 1890) and conducted first scientific excavations with early attempts at quantitative analysis (Stur, 1870).

Figure 22.

Collection drawer with hundreds of turrid gastropods (from the Vienna Basin), which were eponymous for the so-called Pleurotoma clays.

Figure 22.

Collection drawer with hundreds of turrid gastropods (from the Vienna Basin), which were eponymous for the so-called Pleurotoma clays.

Soon, the scientists became fascinated by the wealth and tropical character of the marine mollusc fauna found throughout the Habsburg Monarchy territory in Middle Miocene strata. The French geologist Louis-Constant Prévost (1787–1856), a pioneer in studying the geology of the Vienna Basin, was the first to recognize the importance of the mollusc faunas for international stratigraphic correlations (Prévost, 1820).

What was the starting point for Austrian paleontologists? The avant-garde in describing Tertiary mollusc faunas was a group of outstanding French and Italian natural scientists, who inspired the Viennese scientists. The enormously species-rich faunas from the Paris Basin and the Aquitaine Basin in France were described during the early nineteenth century by Jean-Baptiste de Lamarck (1744–1829), Jean-Pierre Sylvestre de Grateloup (1782–1861), and Gérard Paul Deshayes (1795–1875). No less pioneering were the descriptions of Eocene, Miocene, and Pliocene mollusc faunas from northern Italy by Giambattista Brocchi (1772–1826), Alexandre Brongniart (1770–1847), Giovanni Michelotti (1812–1898), and Luigi Bellardi (1818–1889). Their descriptions, and even more so their illustrations, were most influential and epoch making for European earth scientists. The iconic French and Italian monographs were all available in the Viennese library, and exchanges of material from the Vienna Basin with those from other important European localities allowed a direct comparison of putatively related taxa. At the Natural History Museum, in those days called the “Vereinigte K.K. Naturalien-Cabinete,” an important group of scientists focused on the Miocene faunas. Paul Maria Partsch (1791–1856) started to arrange the paleontological collection, followed by Moriz Hörnes (1815–1868) and his assistant, Mathias Auinger (1811–1890). First comprehensive lists were published, culminating in the seminal publications on the mollusc fauna of the Vienna Basin by Hörnes (1851–1856, 1859–1867).

Despite these nearly ideal framework conditions, in terms of collections and accessibility of fossil-bearing localities, the identifications in these early monographs were severely flawed due to the still quite ambiguous species concepts. Numerous taxa were erroneously considered to be conspecific with older French species or with the Pliocene Italian taxa (Fig. 23). Obvious morphological differences between the species were often simply considered to be varieties within a broad morphologic species concept. This approach had the clear disadvantage of overemphasizing the stratigraphic ranges of species and of obscuring paleogeographic patterns.

Figure 23.

Facsimile of a plate depicting cancellariid gastropods from the comprehensive monograph on the Miocene mollusc fauna from the Vienna Basin by Hörnes (1851–1856) with a picture of the syntype of Trigonostoma exgeslini (Sacco, 1894). Half of the species on the plate were erroneously equated with Early Miocene or Pliocene species, thus blurring the stratigraphic significance of the Middle Miocene faunas (see Harzhauser and Landau, 2012, for a revision).

Figure 23.

Facsimile of a plate depicting cancellariid gastropods from the comprehensive monograph on the Miocene mollusc fauna from the Vienna Basin by Hörnes (1851–1856) with a picture of the syntype of Trigonostoma exgeslini (Sacco, 1894). Half of the species on the plate were erroneously equated with Early Miocene or Pliocene species, thus blurring the stratigraphic significance of the Middle Miocene faunas (see Harzhauser and Landau, 2012, for a revision).

At that time, micropaleontology was at its very beginnings and (bio)stratigraphical considerations were often based on comparisons of mollusc faunas in marine deposits. In his Principles of Geology (1830–1833), the British geologist, Charles Lyell (1797–1875), proposed a novel statistical method to reconstruct the relative age of fossil-bearing strata based on the percentage of living molluscs represented within the fossil assemblages. Lyell’s method was based on data of Gérard Paul Deshayes, published as a long list of taxa in volume II of the Principles of Geology. According to that census, Pliocene faunas yield ~45% of still-living species, Miocene faunas comprise ~17%, and Eocene faunas only 3.4% of extant species. Due to the broad species concept, in which Miocene shells from the Vienna Basin were equated with Pliocene species from Italy, Moriz Hörnes could not reproduce Lyell’s results, and thus he rejected this method in the prologue of his monograph in 1851. Because he was unable to differentiate unambiguously between Miocene and Pliocene faunas, he proposed to discard the terms Miocene and Pliocene and instead unite both in his “Neogene.” Two years later, Hörnes (1853) formally introduced the term Neogene and again emphasized the impossibility to distinguish between Miocene and Pliocene mollusc faunas. Unfortunately, he felt encouraged in his erroneous opinion by the spectacular faunas from Lăpugiu de Sus in Romania, which had just been discovered. For Hörnes, it was unacceptable that the exceptionally well preserved shells, representing typical Vienna Basin species, could be of Miocene age—which he called an imposition—and assumed that they had lived in a much younger sea. Curiously enough, Hörnes’ misconception of the Neogene—based on a pre-Darwinian species concept, neglecting evolution—has survived until today as a formal period in the International Chronostratigraphic Chart (Gradstein et al., 2012; Cohen et al., 2013).

After Hörnes’ death, a new generation of paleontologists, including his son, Rudolf Hoernes (1850–1912), started to reevaluate his data. The collections of the museum were strongly enlarged by new findings from other Neogene basins in the territory of the Austrian monarchy. In 1876, the museum was reorganized as the “K.K. Naturhistorisches Hofmuseum” (Imperial Royal Court-Museum). In the late 1870s, Emperor Franz Joseph I decided to build a new museum complex for the natural history collections and the fine arts collections. In the fall of 1871, the excavations for the construction of the imperial buildings at the Burgring started. About ten years later, the new building was completed, and the collections were successively transferred. This entailed rearranging the collection of fossil molluscs. Mathias Auinger (1810–1890), an autodidact who started as a servant in the paleontological collection of the museum and successively achieved a position equivalent to a collection manager today, sorted the new acquisitions. He soon recognized that many of the former “varieties” represent distinct morphologies and undescribed species. Nonetheless, this morphological species concept lacked an overarching and explanatory theory.

In the meantime, however, a revolutionary idea had stimulated the leading Viennese paleontologists—the Darwinian theory of evolution, referred to as “Descendenztheorie” in contemporary Austrian and German literature. Now, species were “allowed” to change, and morphological varieties of older authors were recognized to represent evolutionary successions. The morphologic species concept became distinctly more elaborate, and the understanding of genera as groups of phylogenetically related species required a complete rethinking. The Miocene mollusc faunas were revised by Rudolf Hoernes and Mathias Auinger in several monographs (Hoernes and Auinger, 1879–1891). The Middle Miocene assemblages turned out to be highly discrete, though often intermediary between Early Miocene and Pliocene faunas. Moreover, the enigmatic endemic mollusc faunas from the various long-lived Miocene and Pliocene lakes on Austrian territory suddenly “made sense in the light of evolution”—to rephrase Dobzhansky (1973). For decades, paleontologists were exasperated with the enormous morphologic disparity observed in certain freshwater gastropod genera such as Melanopsis and Viviparus. The obvious plasticity was a contradiction to the assumed stability and immutability of species. Even the otherwise ingenious Theodor Fuchs (1872) wrote that “… die scheinbare Veränderlichkeit in Wirklichkeit gar nicht existire, sondern nur durch eine ungewöhnlich reiche Erzeugung von Bastarden hervorgerufen werde” [“in reality, the ostensible variability does not exist but is caused by an unusual production of bastards”], and he referred to the phenomenon as “chaotic polymorphism.” In sharp contrast, Melchior Neumayr (1845–1890) (Fig. 24), in the seminal monograph by Neumayr and Paul (1875), provided a new interpretation of the rapid shift in morphologies observed in viviparid gastropods in the lignite mines of Slavonia in Croatia: they reflect extrinsic factors such as changes in environmental parameters. The book became known to Charles Darwin, who immediately recognized that Neumayr’s results perfectly fit his theory. On 9 March 1877, he sent a letter to Neumayr stating: “… It seems to me to be an admirable work; and is by far the best case which I have ever met with, showing the direct influence of the conditions of life on the organization. …There can now be no doubt that species may become greatly modified through the direct action of the environment. I have some excuse for not having formerly insisted more strongly on this in my ‘Origin of Species,’ as most of the best facts have been observed since its publication” (Darwin, 1887, p. 232).

Figure 24.

Melchior Neumayr (1845–1890) was one of the first Darwinists among the Austrian paleontologists. Image courtesy of Archive of the Geological Survey of Austria.

Figure 24.

Melchior Neumayr (1845–1890) was one of the first Darwinists among the Austrian paleontologists. Image courtesy of Archive of the Geological Survey of Austria.

More than 100 years later, a detailed morphometric analysis of hundreds of gastropod shells from the late Miocene of Lake Pannon by Neubauer et al. (2013) fully confirmed Neumayr’s concept. Shifts in the geochemical composition of the shells, linked with changes in the environment, clearly coincided with phenotypic changes. The observed expansion of the morphospace was a result of adaptive radiation (Fig. 25).

Figure 25.

Principal component analysis of Fourier coefficients reflecting morphological differences in shell outlines of the Late Miocene Melanopsis species, modified from Neubauer et al. (2012). To visualize shifts in the morphologic spectrum over time, some typical specimens are illustrated (scale bar = 10 mm).

Figure 25.

Principal component analysis of Fourier coefficients reflecting morphological differences in shell outlines of the Late Miocene Melanopsis species, modified from Neubauer et al. (2012). To visualize shifts in the morphologic spectrum over time, some typical specimens are illustrated (scale bar = 10 mm).

During the past decades, the stratigraphy of the European Neogene basins was elucidated and constrained by integrated stratigraphy, including micropaleontology, magnetostratigraphy, astrochronology, and absolute dating. Within that advanced framework, the mollusc faunas lost their prominent position as stratigraphic tools. Instead, they turned out to be perfect mirrors of climate change in the past, tracers of paleoenvironmental shifts, and excellent indicators for paleogeographic developments (Harzhauser and Piller, 2007; Zuschin et al., 2013). A recent revision of the cone shells by Harzhauser and Landau (2016) revealed more than 13% of the taxa to be undescribed species. Moreover, their unexpected close relation to modern faunas from Western Africa raises serious doubts about the traditionally assumed Indo-Pacific affinity of Miocene European faunas. This makes the collections of the Natural History Museum invaluable archives that are available to exploration from ever new perspectives.

SUMMARY AND CONCLUSIONS

The Natural History Museum Vienna has had a long and illustrious history in terms of its geoscience collections. The meteorite collection is the oldest in the world and still one of the most important ones that exist, both in terms of the historical objects and the total number. The museum’s paleontological collections were of great importance in the development of Darwinian evolution in general and Austrian paleontology in particular.

ACKNOWLEDGMENTS

We thank Ludovic Ferrière for providing high-quality photographs of meteorite specimens.

We are grateful to Thomas Hofmann (Geological Survey, Vienna) for his critical review and comments, to a second anonymous reviewer, and to editor G. Rosenberg for many helpful comments.

ACKNOWLEDGMENTS

We thank Ludovic Ferrière for providing high-quality photographs of meteorite specimens.

We are grateful to Thomas Hofmann (Geological Survey, Vienna) for his critical review and comments, to a second anonymous reviewer, and to editor G. Rosenberg for many helpful comments.

ACKNOWLEDGMENTS

We thank Ludovic Ferrière for providing high-quality photographs of meteorite specimens.

We are grateful to Thomas Hofmann (Geological Survey, Vienna) for his critical review and comments, to a second anonymous reviewer, and to editor G. Rosenberg for many helpful comments.

ACKNOWLEDGMENTS

We thank Ludovic Ferrière for providing high-quality photographs of meteorite specimens.

We are grateful to Thomas Hofmann (Geological Survey, Vienna) for his critical review and comments, to a second anonymous reviewer, and to editor G. Rosenberg for many helpful comments.

ACKNOWLEDGMENTS

We thank Ludovic Ferrière for providing high-quality photographs of meteorite specimens.

We are grateful to Thomas Hofmann (Geological Survey, Vienna) for his critical review and comments, to a second anonymous reviewer, and to editor G. Rosenberg for many helpful comments.

ACKNOWLEDGMENTS

We thank Ludovic Ferrière for providing high-quality photographs of meteorite specimens.

We are grateful to Thomas Hofmann (Geological Survey, Vienna) for his critical review and comments, to a second anonymous reviewer, and to editor G. Rosenberg for many helpful comments.

ACKNOWLEDGMENTS

We thank Ludovic Ferrière for providing high-quality photographs of meteorite specimens.

We are grateful to Thomas Hofmann (Geological Survey, Vienna) for his critical review and comments, to a second anonymous reviewer, and to editor G. Rosenberg for many helpful comments.

Unpublished Sources

  • AfW NHMW = Archiv für Wissenschaftsgeschichte Naturhistorisches Museum Wien

  • ASF = Archivio di Stato di Firenze

  • ÖStA/HHStA = Österreichisches Staatsaarchiv Abteilung Haus-, Hof- und Staatsarchiv Wien/Vienna

  • ASF, Consiglio die Reggenza, Faz.6: Depeches au Conseil des Finances de l’année, fol 82r

  • ASF, Consiglio die Reggenza, 23 carta 27

  • ASF, Consiglio die Reggenza, 24, p. 287, “Per causa ordinaria”

  • ASF, Consiglio die Reggenza, 24, p. 286 Ristretto dell’Incassato.. in mesci setti—cive dal primo gennaio a tutto luglio 1750, August 1750

  • ASF Consiglio di Reggenza, 24, p. 295r Dimonstrazionen della differnza che si ved dal Resultato de le Ristrello dell Entrata e Spese della Deposita S. equile nellánno 1749

  • ASF, Segreteria Finanze Affari primo del 1788, Anni precedenti, 479: Toussain an Richecourt 4.11.1754, p. 1

  • ASF, Deputazione sopra la nobiltá e cittadinanza Fasc. 18

  • ASF, Segreteria Finanze Affari primo del 1788, Anni precedenti, 479: Toussain an Richecourt 4.11.1754, p. 1

  • ÖStA/HHStA, Posch-Akten, jüngere Serie, Karton 8

  • ÖStA/HHStA, Sonderreihe, Karton 371, Mappe 8, Bericht

  • ÖstA/HHStA, OKäA Akten Serie B, Karton 4, CCC4

  • ÖStA/HHStA, OKäA Akten Serie B, Karton 9, Nr 41 ex 1787

REFERENCES CITED

Bauer
,
A.
,
1883
,
Chemie und Alchemy in Österreich bis zum beginnenden XIX
:
Jahrhundert
:
Vienna, R. Lechner
,
85
p.
Bergmann
,
J.
,
1856
,
Pflege der Numismatik in Oesterreich im XVIII, und XIX
:
Wien, Jahrhundert mit besonderem Hinblick auf das k. k. Münz- und Medaillencabinet
in
Wien
,
80
p.
Berwerth
,
F.
,
1918
,
Die Meteoritensammlung des Naturhistorischen Hofmuseums als Born der Meteoritenkunde: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, phil.-hist.
Classe
 , v.
19
, p.
31
108
.
Blöchinger von Bannholz
,
C.F.
,
1864
,
Der Oberstlieutenant Chevalier de Baillou und die Entstehung des k.k
:
Hof-Naturalien-Cabinets zu Wien
:
Vienna, Österreichische Militärzeitschrift
, v.
3
, p.
273
284
.
Blöchlinger
von Bannholz
,
C.F.
,
1868
,
Chevalier Jean de Baillou, erster Director des k. k. Hof-Naturalien-Cabinets in Wien und Oberstlieutenant in der Artillerie
.
Ein Beitrag zur Geschichte der Gelehrten, der Kunst und der Erfindungen
 :
Wien
,
E. Schlieper
,
52
p.
Born
,
I.
,
1780
,
Musaei Caesarei Vindobonensis Testacea, quae jussu Mariae Theresiae disposiuit
:
Vienna
,
Gerold
,
442
p., doi:10.5962/bhl.title.119974.
Brandstätter
,
F.
,
2006
,
History of the meteorite collection of the Natural History Museum of Vienna
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication
256
, p.
123
133
.
Brezina
,
A.
,
1885
,
Die Meteoritensammlung des Kaiserlichen königlichen mineralogischen Hofcabinetes in Wien am I. Mai 1885
:
Wien
,
Jahrbuch der Kaiserlichen königlichen geologischen Reichsanstalt
, v.
35
, p.
151
276
.
Burke
,
J.G.
,
1986
,
Cosmic Debris: Meteorites in History
:
Berkeley
,
University of California Press
,
445
p.
Chladni
,
E.F.F.
,
1794
,
Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen
:
Riga
,
Johann Friedrich Hartknoch
,
63
p.
Chladni
,
E.F.F.
,
1819
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
:
Wien, J.G. Heubner
,
434
p.
Cohen
,
K.M.
,
Finney
,
S.C.
,
Gibbard
,
P.L.
, and
Fan
,
J.-X.
,
2013
,
The ICS International Chronostratigraphic Chart: Episodes
, v.
36
, p.
199
204
.
Darwin
,
F.
,
1887
,
Charles Darwin: Life and Letters
 :
London
,
John Murray
, v.
2
,
398
p.
Dobzhansky
,
T.
,
1973
,
Nothing in biology makes sense except in the light of evolution: The American Biology Teacher
, v.
35
, p.
125
129
, doi:10.2307/4444260.
Fitzinger
,
L.J.
,
1856
,
Geschichte des kaiserlich-königlichen Hof-Naturalien-Cabinetes zu Wien 1. Abteilung
:
Älteste Periode bis zum Tode Kaiser Leopold II. 1792
 :
Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserl
:
Akademie der Wissenschaften
, v.
21
, p.
433
479
.
Fitzinger
,
L.J.
,
1868a
,
Geschichte des kais. kön. Hof- Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVII
, p.
1013
1092
.
Fitzinger
,
L.J.
,
1868b
,
Geschichte des kais. kön. Hof- Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVIII
, p.
35
120
.
Fleischer
,
K.
1932
,
Das kunstgeschichtliche Material der geheimen Kammerzahlamtsbücher in den staatlichen Archiven Wiens von 1705 bis 1790
:
Quellenschriften zur barocken Kunst in Österreich und Ungarn
 :
Wien
,
Krystall-Verlag
, v.
1
.
Fuchs
,
T.
,
1872
,
Ueber den sogenannten “chaotischen Polymorphismus” und einige fossile Melanopsis-Arten
:
Verhandlungen d. k. k. zoolog.-botanischen Gesellschaft
 , v.
22
, p.
3
6
.
Garms-Cornides
,
E.
,
1999
,
Funktionäre und Karrieren in Italien Karls VI
, in
Mazohl-Wallnig
B.
, ed.,
Italienisches Österreich?
 :
Vienna
,
Interkulturelle Gemeinsamkeiten und nationale Differenzen vom 18. Jahrhundert bis zum Ende des Ersten Weltkrieges
, p.
207
225
.
Gradstein
,
F.M.
,
Ogg
,
J.G.
,
Schmitz
,
M.D.
, and
Ogg
,
G.M.
, eds.,
2012
,
The Geological Time Scale 2012
:
Amsterdam
,
Elsevier
,
2
vols.,
1144
p.
Grauer
,
K.J.
,
1932
,
Franz I. Stephan von Lothringen-Toskana, römisch-deutscher Kaiser
.
Sein Leben dargestellt bis zu seiner Kaiserwahl [Ph.D. thesis]
 :
Vienna
,
University of Vienna
, 97 p.
Güssmann
,
F.
,
1785
,
Lithophylacium Mitisianum—Dissertatione Praenia et Observationibus Perpetuis Physico Mineralogicis Explicatum
:
Viennae
,
Josephi Nobilis de Kurzbeck
,
632
p.
Güssmann
,
F.
,
1803
,
Über die Steinregen an den jungen Grafen Eugen Wrbna
:
Wien
,
Johann Thomas Edlen von Trattern
,
50
p.
Haidinger
,
K.
,
1782
,
Eintheilung der kaiserl. königl. Naturaliensammlung zu Wien
:
Vienna
,
Friedrich Christian Wappler
,
104
p.
Hamann
,
G.
,
1976
,
Das Naturhistorische Museum in Wien.
Die Geschichte der Wiener naturhistorischen Sammlungen bis zum Ende der Monarchie
 :
Wien
,
Veröffentlichungen aus dem Naturhistorischen Museum, Neue Folge
13
,
98
p.
Harzhauser
,
M.
, and
Landau
,
B.
,
2012
,
A revision of the Neogene Cancellariid Gastropods of the Paratethys Sea
:
Zootaxa
, v.
3472
, p.
1
72
.
Harzhauser
,
M.
, and
Landau
,
B.M.
,
2016
,
A revision of the Neogene Conidae and Conorbidae (Gastropoda) of the Paratethys Sea
:
Zootaxa
, v.
4210
, p.
1
178
, doi:10.11646/zootaxa.4210.1.1.
Harzhauser
,
M.
, and
Piller
,
W.E.
,
2007
,
Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the central Paratethys during the Miocene
:
Palaeogeography, Palaeoclimatology, Palaeoecology
 , v.
253
, p.
8
31
, doi:10.1016/j.palaeo.2007.03.031.
Hassmann
,
E.
,
2015
,
Quellen und Regesten zur Schatzkammer, Gemäldegalerie und zu den drei Kabinetten aus dem Archivbestand des k.k. Oberstkämmereramtes 1777 bis 1787 mit einem Nachtrag zu den Jahren 1748 bis 1776
:
Wien
,
Jahrbuch des Kunsthistorischen Museums Wien
, v.
15–16
,
403
p.
Hazen
,
R.M.
,
Papineau
,
D.
,
Bleeker
,
W.
,
Downs
,
R.T.
,
Ferry
,
J.M.
,
McCoy
,
T.J.
,
Sverjensky
,
D.A.
, and
Yang
,
H.
,
2008
,
Mineral evolution: The American Mineralogist
, v.
93
, p.
1693
1720
, doi:10.2138/am.2008.2955.
Hochstetter
,
F.
,
1884
,
Die Geschichte des Hof-Mineraliencabinets und seiner Sammlungen.
Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
34
, p.
263
298
.
Hoernes
,
R.
,
1890
,
Versteinerungen aus dem miocänen Tegel von Walbersdorf: Verhandlungen der k.k
:
Geologischen Reichsanstalt
, v.
1890
, p.
129
131
.
Hoernes
,
R.
, and
Auinger
,
M.
,
1879–1891
,
Die Gastropoden der Meeresablagerungen der ersten und zweiten Miozänen Mediterranstufe in der österreichischen-ungarischen Monarchie
:
Abhandlungen der k.k.
geologischen Reichsanstalt
, v.
12
, p.
1
382
.
Hoppe
,
G.
,
1982
,
E.F.F. Chladni—Über den kosmischen Ursprung der Meteorite und Feuerkugeln (1794)
, in
Goetz
,
D.
, ed.,
Ostwalds Klassiker der exakten Wissenschaften (zweite Auflage)
:
Leipzig, Akademische Verlagsgesellschaft Geest & Portig K.-G.
,
104
p.
Hörnes
,
M.
,
1851
, 1856,
Die fossilen Mollusken des Tertiär-Beckens von Wien. I. Band
.
Univalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
3
, p.
1
736
.
Hörnes
,
M.
,
1853
,
Mittheilungen an Professor Bronn gerichtet: Neues Jahrbuch für Mineralogie
,
Geologie
:
Geognosie und Petrefakten-Kunde
, v.
1853
, p.
806
810
.
Hörnes
,
M.
,
1859
, 1867,
Die fossilen Mollusken des Tertiär-Beckens von Wien. II. Band.
Bivalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
4
, p.
1
430
.
Kieslinger
,
A.
,
1972
,
Die Wiener Ringstraße—Bild einer Epoche: Die Erweiterung der Inneren Stadt Wien unter Kaiser Franz Joseph: Band IV
:
Die Steine der Wiener Ringstraße
:
Wiesbaden, Steiner
,
665
p.
Küchelbecker
,
J.B.
,
1730
,
Johann Basilii Kuchelbeckers allerneueste Nachricht vom Römisch-Käyserlichen Hofe
:
Nebst einer ausführlichen historischen Beschreibung der kayserlichen Residentz-Stadt Wien, und der umliegenden Oerter, theils aus den Geschichten, theils aus eigener Erfahrung zusammen getragen und mit saubern Kupffern ans Licht gegeben
 :
Hanover
,
Förster
,
884
p.
Lhotsky
A.
,
1941–1945
,
Festschrift des Kunsthistorischen Museums. Zur Feier des fünfzigjährigen Bestandes 2
.
Teil: Die Geschichte der Sammlungen, Horn
 ,
Austria
,
Verlag Ferdinand Berger
,
412
p.
Lualdi
A.
,
1996
,
Francois de Baillou, un ottico della Milano Teresiana
:
Nuncius Annali di Soria della Scienza XI, fasc. 2
 ,
Firenze
, p.
613
630
.
Lyell
,
C.
,
1830–1833
,
Principles of Geology: Being an attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation
:
London
,
John Murray
, v.
1
(
1830
),
511
p., v. 2 (1832), 398 +
109
p., v. 3 (1833),
330
p.
Mambriani
,
C.
,
1994
,
La Versaglia dei duchi di Parma: Prototipi e metamorfosi die giardini di Colorno
:
I giardini del “Principe” IV Convegno Internazionale
 .
Parchi e giardini storici, parchi letterari
,
Roma
, p.
149
158
.
Marvin
,
U.
,
2006
,
Meteorites in history: An overview from the Renaissance to the 20th century
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication
256
, p.
15
71
.
Moser
,
J.
,
1808
,
Darstellung der physisch-chemischen Eigenschaften der, welche am 22.
Mai 1808 bei und in Stannern in Mähren aus der Luft gefallen sind: Annalen der Physik
 , v.
29
, p.
309
327
, doi:10.1002/andp.18080290705.
Neubauer
,
T.A.
,
Harzhauser
,
M.
, and
Kroh
,
A.
,
2013
,
Phenotypic evolution in a fossil gastropod species lineage: Evidence for adaptive radiation?: Palaeogeography
,
Palaeoclimatology, Palaeoecology
 , v.
370
, p.
117
126
, doi:10.1016/j.palaeo.2012.11.025.
Neumayr
,
M.
, and
Paul
,
C.M.
,
1875
,
Die Congerien- und Paludienschichten Slavoniens und deren Faunen: Abhandlungen der k.k.
:
Geologischen Reichsanstalt
, v.
7
, p.
1
106
.
Niedermayer
,
G.
,
1984
,
Der Blumenstrauß aus Stein
:
Magma
, v.
2
, p.
82
83
.
Paneth
,
F.A.
,
1960
,
The discovery and earliest reproductions of the Widmanstätten figures: Geochimica et Cosmochimica Acta
, v.
18
, p.
176
180
, https://doi.org/10.1016/0016-7037(
60
)
90085
5
.
Pärr
,
N.
,
2013
,
Maximilian Hell und sein wissenschaftliches Umfeld in Wien des 18
.
Jahrhunderts
:
Religionsgeschichte der Frühen Neuzeit
, v.
14
,
333
p.
Partsch
,
P.
,
1843
,
Die Meteoriten oder vom Himmel gefallenen Steine und Eisenmassen im k.k. Hof-Mineralienkabinette zu Wien
:
Wien
,
Kaulfuss Witwe, Prandel & Company
,
162
p.
Prévost
,
C.
,
1820
,
Essai sur la constitution physique et geognostique du bassin a l’ouverture duquel est situee la ville de Vienne en Autriche
:
Journal de Physique, Chimie, d’Histoire naturelle et sur les Arts et Métiers
 , v.
92
, p.
428
434
.
Riedl-Dorn
,
C.
,
1998
,
Das Haus der Wunder
.
Zur Geschichte des Naturhistorischen Museums in Wien
:
Vienna, Holzhausen
,
308
p.
Riedl-Dorn
,
C.
,
2000
,
Chevalier de Baillou und das Naturalienkabinett
, in
Zedinger
,
R.
, ed.,
Lothringens Erbe
,
St. Pölten, self-published
, p.
111
123
.
Riedl-Dorn
,
C.
,
2001
,
Franz Stephan als Förderer naturwissenschaftlicher Aktivitäten
, in
Kowalská
,
E.
, and
Celková
,
M.
, eds.,
Zlatá a strieborná cesta cisára Frantiska Stefana Lotrinského po stredoslovenských banských mestách
 :
Slovakia
,
Banská Stiavnica
, p.
29
39
.
Sacco
,
F.
,
1894
,
I molluschi dei terreni terziarii del Piemonte e della Liguria
.
Parte 16: Fam. Cancellariidae H. e A. Adams 1853
 :
Bollettino dei Musei di Zoologia ed Anatomia comparata della Reale Universita di Torino
, v.
9
, no.
171
, p.
68
70
.
Saint-Laurent
,
J.
,
1746
,
Déscriptions abregée du fameux cabinet des M. le Chevalier de Baillou pour servir à l’histoire naturelle des pierres précieuses, métaux, minéraux et autres fossils
:
Luques [Lucca, Tuscany]
,
Sauveur & Jean-Dominique Marescandoli
,
156
p.
Scholler
,
H.
,
1953
,
Carl Franz Anton Ritter von Schreibers.
Zur 100
 .
Wiederkehr seines Todestages
:
Annalen des Naturhistorischen Museums in Wien
, v.
59
, p.
23
48
.
Schönburg-Hartenstein
,
J.
,
1987
,
Josef Anton Nagel—ein Direktor des physikalischen Kabinettes
:
Vienna
,
Verlag der österreichischen Akademie der Wissenschaften
,
113
p.
Schreibers
,
C.
,
1819
,
Anhang-Verzeichnis der Sammlung von Meteor=Massen, welche sich im k.k. Hof-Mineralien-Cabinette in Wien befindet
, in
Chladni
,
E.F.F.
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
 :
Wien
,
Heubner
, p.
425
434
.
Schreibers
,
C.
,
1820
,
Beytrage zur Geschichte und Kenntnis meteorischer Stein-und Metall-Massen, und der Erscheinungen, welche deren Niederfallen zu begleiten pf1egen
:
Wien
,
Heubner
,
97
p.
Schreibers
,
K. v.
,
1808
,
Nachrichten von dem Steinregen, der sich am 22sten Mai 1808 in und um Stannern in Mähren ereignet hat
:
Annalen der Physik
, v.
29
, p.
225
250
, doi:10.1002/andp.18080290702.
Schreibers
,
K. v.
,
1809
,
Beschreibung der mährischen Meteorsteine nach ihrem Aeußern, vorzüglich der Rinde, und nach ihrer Masse, und einige Folgerungen, auf welche diese Beschreibung führt
:
Annalen der Physik
, v.
31
, p.
23
77
, doi:10.1002/andp.18090310103.
Stur
,
D.
,
1870
,
Beiträge zur Kenntniss der stratigraphischen Verhältnisse der marinen Stufe des Wiener Beckens: Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
20
, p.
303
342
.
Stütz
,
A.
,
1790
,
Ueber einige vorgeblich vom Himmel gefallene Steine
, in
Born
,
I.
, and
Trebra
,
F.W.H.
, eds.,
Bergbaukunde, zweyter Band
:
Leipzig, Georg Joachim Goeschen
, p.
398
409
.
Stütz
,
A.
,
1807
,
Mineralogisches Taschenbuch enthaltend eine Oryctographie von Unterösterreich; zum Gebrauche reisender Mineralogen
:
Wien and Triest
,
Geistinger’s Buchhandlung
,
394
p.
Troili
,
D.
,
1766
,
Della Caduta di un Sasso dall’Aria
,
Ragionamento
:
Modena
,
120
p.
Tromballa
,
T.
,
1953
,
Franz Stephan und sein Kreis: Beiträge zur Kulturgeschichte des Hauses Habsburg-Lothringen [Ph.D. thesis]
:
Vienna
,
University of Vienna
,
288
p.
Vauquelin
,
L.N.
,
1809
,
De la aerolite tombée à Stannern en Moravie, le 22 Mai 1808
:
Annales de Chimie et de Physique
 , v.
70
, p.
321
330
.
Wandruszka
,
A.
,
1962
,
Die Habsburg-Lothringer und die Naturwissenschaften, Mitteilungen des Instituts für Österreichische Geschichtsforschung 70
:
Vienna
,
Böhlau Verlag
, p.
355
364
.
Zedinger
,
R.
,
2009
,
“Kaiserliche Wunschliste”: Die Instruktion für Nikolaus Joseph Jacquin
, in
Zedinger
,
R.
, and
Schmale
,
W.
, eds.,
Franz Stephan von Lothringen und sein Kreis/L’empereur François Ier et le réseau lorrain/L’imperatore Francesco I e il circolo lorenese
 :
Das Achtzehnte Jahrhundert und Österreich Band
23
, p.
293
300
.
Zuschin
,
M.
,
Harzhauser
,
M.
,
Hengst
,
B.
,
Mandic
,
O.
, and
Roetzel
,
R.
,
2013
,
Long-term ecosystem stability in an Early Miocene estuary
:
Geology
 , v.
42
, p.
7
10
, https://doi.org/10.1130/G34761.1.

REFERENCES CITED

Bauer
,
A.
,
1883
,
Chemie und Alchemy in Österreich bis zum beginnenden XIX
:
Jahrhundert
:
Vienna, R. Lechner
,
85
p.
Bergmann
,
J.
,
1856
,
Pflege der Numismatik in Oesterreich im XVIII, und XIX
:
Wien, Jahrhundert mit besonderem Hinblick auf das k. k. Münz- und Medaillencabinet
in
Wien
,
80
p.
Berwerth
,
F.
,
1918
,
Die Meteoritensammlung des Naturhistorischen Hofmuseums als Born der Meteoritenkunde: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, phil.-hist
.
Classe
 , v.
19
, p.
31
108
.
Blöchinger von Bannholz
,
C.F.
,
1864
,
Der Oberstlieutenant Chevalier de Baillou und die Entstehung des k.k
:
Hof-Naturalien-Cabinets zu Wien
:
Vienna, Österreichische Militärzeitschrift
, v.
3
, p.
273
284
.
Blöchlinger
von Bannholz
,
C.F.
,
1868
,
Chevalier Jean de Baillou, erster Director des k. k. Hof-Naturalien-Cabinets in Wien und Oberstlieutenant in der Artillerie
.
Ein Beitrag zur Geschichte der Gelehrten, der Kunst und der Erfindungen
 :
Wien
,
E. Schlieper
,
52
p.
Born
,
I.
,
1780
,
Musaei Caesarei Vindobonensis Testacea, quae jussu Mariae Theresiae disposiuit
:
Vienna
,
Gerold
,
442
p., doi:10.5962/bhl.title.119974.
Brandstätter
,
F.
,
2006
,
History of the meteorite collection of the Natural History Museum of Vienna
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
123
133
.
Brezina
,
A.
,
1885
,
Die Meteoritensammlung des Kaiserlichen königlichen mineralogischen Hofcabinetes in Wien am I. Mai 1885
:
Wien
,
Jahrbuch der Kaiserlichen königlichen geologischen Reichsanstalt
, v.
35
, p.
151
276
.
Burke
,
J.G.
,
1986
,
Cosmic Debris: Meteorites in History
:
Berkeley
,
University of California Press
,
445
p.
Chladni
,
E.F.F.
,
1794
,
Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen
:
Riga
,
Johann Friedrich Hartknoch
,
63
p.
Chladni
,
E.F.F.
,
1819
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
:
Wien, J.G. Heubner
,
434
p.
Cohen
,
K.M.
,
Finney
,
S.C.
,
Gibbard
,
P.L.
, and
Fan
,
J.-X.
,
2013
,
The ICS International Chronostratigraphic Chart: Episodes
, v.
36
, p.
199
204
.
Darwin
,
F.
,
1887
,
Charles Darwin: Life and Letters
 :
London
,
John Murray
, v.
2
,
398
p.
Dobzhansky
,
T.
,
1973
,
Nothing in biology makes sense except in the light of evolution: The American Biology Teacher
, v.
35
, p.
125
129
, doi:10.2307/4444260.
Fitzinger
,
L.J.
,
1856
,
Geschichte des kaiserlich-königlichen Hof-Naturalien-Cabinetes zu Wien 1. Abteilung
:
Älteste Periode bis zum Tode Kaiser Leopold II. 1792
 :
Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserl
:
Akademie der Wissenschaften
, v.
21
, p.
433
479
.
Fitzinger
,
L.J.
,
1868a
,
Geschichte des kais. kön. Hof-Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVII
, p.
1013
1092
.
Fitzinger
,
L.J.
,
1868b
,
Geschichte des kais. kön. Hof- Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVIII
, p.
35
120
.
Fleischer
,
K.
1932
,
Das kunstgeschichtliche Material der geheimen Kammerzahlamtsbücher in den staatlichen Archiven Wiens von 1705 bis 1790
:
Quellenschriften zur barocken Kunst in Österreich und Ungarn
 :
Wien
,
Krystall-Verlag
, v.
1
.
Fuchs
,
T.
,
1872
,
Ueber den sogenannten “chaotischen Polymorphismus” und einige fossile Melanopsis-Arten
:
Verhandlungen d. k. k. zoolog.-botanischen Gesellschaft
 , v.
22
, p.
3
6
.
Garms-Cornides
,
E.
,
1999
,
Funktionäre und Karrieren in Italien Karls VI
, in
Mazohl-Wallnig
B.
, ed.,
Italienisches Österreich?
 :
Vienna
,
Interkulturelle Gemeinsamkeiten und nationale Differenzen vom 18. Jahrhundert bis zum Ende des Ersten Weltkrieges
, p.
207
225
.
Gradstein
,
F.M.
,
Ogg
,
J.G.
,
Schmitz
,
M.D.
, and
Ogg
,
G.M.
, eds.,
2012
,
The Geological Time Scale 2012
:
Amsterdam
,
Elsevier
,
2
vols.,
1144
p.
Grauer
,
K.J.
,
1932
,
Franz I. Stephan von Lothringen-Toskana, römisch-deutscher Kaiser
.
Sein Leben dargestellt bis zu seiner Kaiserwahl [Ph.D. thesis]
 :
Vienna
,
University of Vienna
, 97 p.
Güssmann
,
F.
,
1785
,
Lithophylacium Mitisianum—Dissertatione Praenia et Observationibus Perpetuis Physico Mineralogicis Explicatum
:
Viennae
,
Josephi Nobilis de Kurzbeck
,
632
p.
Güssmann
,
F.
,
1803
,
Über die Steinregen an den jungen Grafen Eugen Wrbna
:
Wien
,
Johann Thomas Edlen von Trattern
,
50
p.
Haidinger
,
K.
,
1782
,
Eintheilung der kaiserl. königl. Naturaliensammlung zu Wien
:
Vienna
,
Friedrich Christian Wappler
,
104
p.
Hamann
,
G.
,
1976
,
Das Naturhistorische Museum in Wien
.
Die Geschichte der Wiener naturhistorischen Sammlungen bis zum Ende der Monarchie
 :
Wien
,
Veröffentlichungen aus dem Naturhistorischen Museum, Neue Folge
13
,
98
p.
Harzhauser
,
M.
, and
Landau
,
B.
,
2012
,
A revision of the Neogene Cancellariid Gastropods of the Paratethys Sea
:
Zootaxa
, v.
3472
, p.
1
72
.
Harzhauser
,
M.
, and
Landau
,
B.M.
,
2016
,
A revision of the Neogene Conidae and Conorbidae (Gastropoda) of the Paratethys Sea
:
Zootaxa
, v.
4210
, p.
1
178
, doi:10.11646/zootaxa.4210.1.1.
Harzhauser
,
M.
, and
Piller
,
W.E.
,
2007
,
Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the central Paratethys during the Miocene
:
Palaeogeography, Palaeoclimatology, Palaeoecology
 , v.
253
, p.
8
31
, doi:10.1016/j.palaeo.2007.03.031.
Hassmann
,
E.
,
2015
,
Quellen und Regesten zur Schatzkammer, Gemäldegalerie und zu den drei Kabinetten aus dem Archivbestand des k.k. Oberstkämmereramtes 1777 bis 1787 mit einem Nachtrag zu den Jahren 1748 bis 1776
:
Wien
,
Jahrbuch des Kunsthistorischen Museums Wien
, v.
15–16
,
403
p.
Hazen
,
R.M.
,
Papineau
,
D.
,
Bleeker
,
W.
,
Downs
,
R.T.
,
Ferry
,
J.M.
,
McCoy
,
T.J.
,
Sverjensky
,
D.A.
, and
Yang
,
H.
,
2008
,
Mineral evolution: The American Mineralogist
, v.
93
, p.
1693
1720
, doi:10.2138/am.2008.2955.
Hochstetter
,
F.
,
1884
,
Die Geschichte des Hof-Mineraliencabinets und seiner Sammlungen
.
Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
34
, p.
263
298
.
Hoernes
,
R.
,
1890
,
Versteinerungen aus dem miocänen Tegel von Walbersdorf: Verhandlungen der k.k
:
Geologischen Reichsanstalt
, v.
1890
, p.
129
131
.
Hoernes
,
R.
, and
Auinger
,
M.
,
1879–1891
,
Die Gastropoden der Meeresablagerungen der ersten und zweiten Miozänen Mediterranstufe in der österreichischen-ungarischen Monarchie
:
Abhandlungen der k.k.
geologischen Reichsanstalt
, v.
12
, p.
1
382
.
Hoppe
,
G.
,
1982
,
E.F.F. Chladni—Über den kosmischen Ursprung der Meteorite und Feuerkugeln (1794)
, in
Goetz
,
D.
, ed.,
Ostwalds Klassiker der exakten Wissenschaften (zweite Auflage)
:
Leipzig, Akademische Verlagsgesellschaft Geest & Portig K.-G.
,
104
p.
Hörnes
,
M.
,
1851
, 1856,
Die fossilen Mollusken des Tertiär-Beckens von Wien. I. Band
.
Univalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
3
, p.
1
736
.
Hörnes
,
M.
,
1853
,
Mittheilungen an Professor Bronn gerichtet: Neues Jahrbuch für Mineralogie
,
Geologie
:
Geognosie und Petrefakten-Kunde
, v.
1853
, p.
806
810
.
Hörnes
,
M.
,
1859
, 1867,
Die fossilen Mollusken des Tertiär-Beckens von Wien. II. Band
.
Bivalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
4
, p.
1
430
.
Kieslinger
,
A.
,
1972
,
Die Wiener Ringstraße—Bild einer Epoche: Die Erweiterung der Inneren Stadt Wien unter Kaiser Franz Joseph: Band IV
:
Die Steine der Wiener Ringstraße
:
Wiesbaden, Steiner
,
665
p.
Küchelbecker
,
J.B.
,
1730
,
Johann Basilii Kuchelbeckers allerneueste Nachricht vom Römisch-Käyserlichen Hofe
:
Nebst einer ausführlichen historischen Beschreibung der kayserlichen Residentz-Stadt Wien, und der umliegenden Oerter, theils aus den Geschichten, theils aus eigener Erfahrung zusammen getragen und mit saubern Kupffern ans Licht gegeben
 :
Hanover
,
Förster
,
884
p.
Lhotsky
A.
,
1941–1945
,
Festschrift des Kunsthistorischen Museums. Zur Feier des fünfzigjährigen Bestandes 2
.
Teil: Die Geschichte der Sammlungen, Horn
 ,
Austria
,
Verlag Ferdinand Berger
,
412
p.
Lualdi
A.
,
1996
,
Francois de Baillou, un ottico della Milano Teresiana
:
Nuncius Annali di Soria della Scienza XI, fasc. 2
 ,
Firenze
, p.
613
630
.
Lyell
,
C.
,
1830–1833
,
Principles of Geology: Being an attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation
:
London
,
John Murray
, v.
1
(
1830
),
511
p., v. 2 (1832), 398 +
109
p., v. 3 (1833),
330
p.
Mambriani
,
C.
,
1994
,
La Versaglia dei duchi di Parma: Prototipi e metamorfosi die giardini di Colorno
:
I giardini del “Principe” IV Convegno Internazionale
 .
Parchi e giardini storici, parchi letterari
,
Roma
, p.
149
158
.
Marvin
,
U.
,
2006
,
Meteorites in history: An overview from the Renaissance to the 20th century
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
15
71
.
Moser
,
J.
,
1808
,
Darstellung der physisch-chemischen Eigenschaften der, welche am 22
.
Mai 1808 bei und in Stannern in Mähren aus der Luft gefallen sind: Annalen der Physik
 , v.
29
, p.
309
327
, doi:10.1002/andp.18080290705.
Neubauer
,
T.A.
,
Harzhauser
,
M.
, and
Kroh
,
A.
,
2013
,
Phenotypic evolution in a fossil gastropod species lineage: Evidence for adaptive radiation?: Palaeogeography
,
Palaeoclimatology, Palaeoecology
 , v.
370
, p.
117
126
, doi:10.1016/j.palaeo.2012.11.025.
Neumayr
,
M.
, and
Paul
,
C.M.
,
1875
,
Die Congerien- und Paludienschichten Slavoniens und deren Faunen: Abhandlungen der k.k
.:
Geologischen Reichsanstalt
, v.
7
, p.
1
106
.
Niedermayer
,
G.
,
1984
,
Der Blumenstrauß aus Stein
:
Magma
, v.
2
, p.
82
83
.
Paneth
,
F.A.
,
1960
,
The discovery and earliest reproductions of the Widmanstätten figures: Geochimica et Cosmochimica Acta
, v.
18
, p.
176
180
, https://doi.org/10.1016/0016-7037(
60
)
90085
5
.
Pärr
,
N.
,
2013
,
Maximilian Hell und sein wissenschaftliches Umfeld in Wien des 18
.
Jahrhunderts
:
Religionsgeschichte der Frühen Neuzeit
, v.
14
,
333
p.
Partsch
,
P.
,
1843
,
Die Meteoriten oder vom Himmel gefallenen Steine und Eisenmassen im k.k. Hof-Mineralienkabinette zu Wien
:
Wien
,
Kaulfuss Witwe, Prandel & Company
,
162
p.
Prévost
,
C.
,
1820
,
Essai sur la constitution physique et geognostique du bassin a l’ouverture duquel est situee la ville de Vienne en Autriche
:
Journal de Physique, Chimie, d’Histoire naturelle et sur les Arts et Métiers
 , v.
92
, p.
428
434
.
Riedl-Dorn
,
C.
,
1998
,
Das Haus der Wunder
.
Zur Geschichte des Naturhistorischen Museums in Wien
:
Vienna, Holzhausen
,
308
p.
Riedl-Dorn
,
C.
,
2000
,
Chevalier de Baillou und das Naturalienkabinett
, in
Zedinger
,
R.
, ed.,
Lothringens Erbe
,
St. Pölten, self-published
, p.
111
123
.
Riedl-Dorn
,
C.
,
2001
,
Franz Stephan als Förderer naturwissenschaftlicher Aktivitäten
, in
Kowalská
,
E.
, and
Celková
,
M.
, eds.,
Zlatá a strieborná cesta cisára Frantiska Stefana Lotrinského po stredoslovenských banských mestách
 :
Slovakia
,
Banská Stiavnica
, p.
29
39
.
Sacco
,
F.
,
1894
,
I molluschi dei terreni terziarii del Piemonte e della Liguria
.
Parte 16: Fam. Cancellariidae H. e A. Adams 1853
 :
Bollettino dei Musei di Zoologia ed Anatomia comparata della Reale Universita di Torino
, v.
9
, no.
171
, p.
68
70
.
Saint-Laurent
,
J.
,
1746
,
Déscriptions abregée du fameux cabinet des M. le Chevalier de Baillou pour servir à l’histoire naturelle des pierres précieuses, métaux, minéraux et autres fossils
:
Luques [Lucca, Tuscany]
,
Sauveur & Jean-Dominique Marescandoli
,
156
p.
Scholler
,
H.
,
1953
,
Carl Franz Anton Ritter von Schreibers
.
Zur 100
 .
Wiederkehr seines Todestages
:
Annalen des Naturhistorischen Museums in Wien
, v.
59
, p.
23
48
.
Schönburg-Hartenstein
,
J.
,
1987
,
Josef Anton Nagel—ein Direktor des physikalischen Kabinettes
:
Vienna
,
Verlag der österreichischen Akademie der Wissenschaften
,
113
p.
Schreibers
,
C.
,
1819
,
Anhang-Verzeichnis der Sammlung von Meteor=Massen, welche sich im k.k. Hof-Mineralien-Cabinette in Wien befindet
, in
Chladni
,
E.F.F.
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
 :
Wien
,
Heubner
, p.
425
434
.
Schreibers
,
C.
,
1820
,
Beytrage zur Geschichte und Kenntnis meteorischer Stein-und Metall-Massen, und der Erscheinungen, welche deren Niederfallen zu begleiten pf1egen
:
Wien
,
Heubner
,
97
p.
Schreibers
,
K. v.
,
1808
,
Nachrichten von dem Steinregen, der sich am 22sten Mai 1808 in und um Stannern in Mähren ereignet hat
:
Annalen der Physik
, v.
29
, p.
225
250
, doi:10.1002/andp.18080290702.
Schreibers
,
K. v.
,
1809
,
Beschreibung der mährischen Meteorsteine nach ihrem Aeußern, vorzüglich der Rinde, und nach ihrer Masse, und einige Folgerungen, auf welche diese Beschreibung führt
:
Annalen der Physik
, v.
31
, p.
23
77
, doi:10.1002/andp.18090310103.
Stur
,
D.
,
1870
,
Beiträge zur Kenntniss der stratigraphischen Verhältnisse der marinen Stufe des Wiener Beckens: Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
20
, p.
303
342
.
Stütz
,
A.
,
1790
,
Ueber einige vorgeblich vom Himmel gefallene Steine
, in
Born
,
I.
, and
Trebra
,
F.W.H.
, eds.,
Bergbaukunde, zweyter Band
:
Leipzig, Georg Joachim Goeschen
, p.
398
409
.
Stütz
,
A.
,
1807
,
Mineralogisches Taschenbuch enthaltend eine Oryctographie von Unterösterreich; zum Gebrauche reisender Mineralogen
:
Wien and Triest
,
Geistinger’s Buchhandlung
,
394
p.
Troili
,
D.
,
1766
,
Della Caduta di un Sasso dall’Aria
,
Ragionamento
:
Modena
,
120
p.
Tromballa
,
T.
,
1953
,
Franz Stephan und sein Kreis: Beiträge zur Kulturgeschichte des Hauses Habsburg-Lothringen [Ph.D. thesis]
:
Vienna
,
University of Vienna
,
288
p.
Vauquelin
,
L.N.
,
1809
,
De la aerolite tombée à Stannern en Moravie, le 22 Mai 1808
:
Annales de Chimie et de Physique
 , v.
70
, p.
321
330
.
Wandruszka
,
A.
,
1962
,
Die Habsburg-Lothringer und die Naturwissenschaften, Mitteilungen des Instituts für Österreichische Geschichtsforschung 70
:
Vienna
,
Böhlau Verlag
, p.
355
364
.
Zedinger
,
R.
,
2009
,
“Kaiserliche Wunschliste”: Die Instruktion für Nikolaus Joseph Jacquin
, in
Zedinger
,
R.
, and
Schmale
,
W.
, eds.,
Franz Stephan von Lothringen und sein Kreis/L’empereur François Ier et le réseau lorrain/L’imperatore Francesco I e il circolo lorenese
 :
Das Achtzehnte Jahrhundert und Österreich Band
23
, p.
293
300
.
Zuschin
,
M.
,
Harzhauser
,
M.
,
Hengst
,
B.
,
Mandic
,
O.
, and
Roetzel
,
R.
,
2013
,
Long-term ecosystem stability in an Early Miocene estuary
:
Geology
 , v.
42
, p.
7
10
, https://doi.org/10.1130/G34761.1.

REFERENCES CITED

Bauer
,
A.
,
1883
,
Chemie und Alchemy in Österreich bis zum beginnenden XIX
:
Jahrhundert
:
Vienna, R. Lechner
,
85
p.
Bergmann
,
J.
,
1856
,
Pflege der Numismatik in Oesterreich im XVIII, und XIX
:
Wien, Jahrhundert mit besonderem Hinblick auf das k. k. Münz- und Medaillencabinet
in
Wien
,
80
p.
Berwerth
,
F.
,
1918
,
Die Meteoritensammlung des Naturhistorischen Hofmuseums als Born der Meteoritenkunde: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, phil.-hist
.
Classe
 , v.
19
, p.
31
108
.
Blöchinger von Bannholz
,
C.F.
,
1864
,
Der Oberstlieutenant Chevalier de Baillou und die Entstehung des k.k
:
Hof-Naturalien-Cabinets zu Wien
:
Vienna, Österreichische Militärzeitschrift
, v.
3
, p.
273
284
.
Blöchlinger
von Bannholz
,
C.F.
,
1868
,
Chevalier Jean de Baillou, erster Director des k. k. Hof-Naturalien-Cabinets in Wien und Oberstlieutenant in der Artillerie
.
Ein Beitrag zur Geschichte der Gelehrten, der Kunst und der Erfindungen
 :
Wien
,
E. Schlieper
,
52
p.
Born
,
I.
,
1780
,
Musaei Caesarei Vindobonensis Testacea, quae jussu Mariae Theresiae disposiuit
:
Vienna
,
Gerold
,
442
p., doi:10.5962/bhl.title.119974.
Brandstätter
,
F.
,
2006
,
History of the meteorite collection of the Natural History Museum of Vienna
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
123
133
.
Brezina
,
A.
,
1885
,
Die Meteoritensammlung des Kaiserlichen königlichen mineralogischen Hofcabinetes in Wien am I. Mai 1885
:
Wien
,
Jahrbuch der Kaiserlichen königlichen geologischen Reichsanstalt
, v.
35
, p.
151
276
.
Burke
,
J.G.
,
1986
,
Cosmic Debris: Meteorites in History
:
Berkeley
,
University of California Press
,
445
p.
Chladni
,
E.F.F.
,
1794
,
Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen
:
Riga
,
Johann Friedrich Hartknoch
,
63
p.
Chladni
,
E.F.F.
,
1819
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
:
Wien, J.G. Heubner
,
434
p.
Cohen
,
K.M.
,
Finney
,
S.C.
,
Gibbard
,
P.L.
, and
Fan
,
J.-X.
,
2013
,
The ICS International Chronostratigraphic Chart: Episodes
, v.
36
, p.
199
204
.
Darwin
,
F.
,
1887
,
Charles Darwin: Life and Letters
 :
London
,
John Murray
, v.
2
,
398
p.
Dobzhansky
,
T.
,
1973
,
Nothing in biology makes sense except in the light of evolution: The American Biology Teacher
, v.
35
, p.
125
129
, doi:10.2307/4444260.
Fitzinger
,
L.J.
,
1856
,
Geschichte des kaiserlich-königlichen Hof-Naturalien-Cabinetes zu Wien 1. Abteilung
:
Älteste Periode bis zum Tode Kaiser Leopold II. 1792
 :
Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserl
:
Akademie der Wissenschaften
, v.
21
, p.
433
479
.
Fitzinger
,
L.J.
,
1868a
,
Geschichte des kais. kön. Hof-Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVII
, p.
1013
1092
.
Fitzinger
,
L.J.
,
1868b
,
Geschichte des kais. kön. Hof- Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVIII
, p.
35
120
.
Fleischer
,
K.
1932
,
Das kunstgeschichtliche Material der geheimen Kammerzahlamtsbücher in den staatlichen Archiven Wiens von 1705 bis 1790
:
Quellenschriften zur barocken Kunst in Österreich und Ungarn
 :
Wien
,
Krystall-Verlag
, v.
1
.
Fuchs
,
T.
,
1872
,
Ueber den sogenannten “chaotischen Polymorphismus” und einige fossile Melanopsis-Arten
:
Verhandlungen d. k. k. zoolog.-botanischen Gesellschaft
 , v.
22
, p.
3
6
.
Garms-Cornides
,
E.
,
1999
,
Funktionäre und Karrieren in Italien Karls VI
, in
Mazohl-Wallnig
B.
, ed.,
Italienisches Österreich?
 :
Vienna
,
Interkulturelle Gemeinsamkeiten und nationale Differenzen vom 18. Jahrhundert bis zum Ende des Ersten Weltkrieges
, p.
207
225
.
Gradstein
,
F.M.
,
Ogg
,
J.G.
,
Schmitz
,
M.D.
, and
Ogg
,
G.M.
, eds.,
2012
,
The Geological Time Scale 2012
:
Amsterdam
,
Elsevier
,
2
vols.,
1144
p.
Grauer
,
K.J.
,
1932
,
Franz I. Stephan von Lothringen-Toskana, römisch-deutscher Kaiser
.
Sein Leben dargestellt bis zu seiner Kaiserwahl [Ph.D. thesis]
 :
Vienna
,
University of Vienna
, 97 p.
Güssmann
,
F.
,
1785
,
Lithophylacium Mitisianum—Dissertatione Praenia et Observationibus Perpetuis Physico Mineralogicis Explicatum
:
Viennae
,
Josephi Nobilis de Kurzbeck
,
632
p.
Güssmann
,
F.
,
1803
,
Über die Steinregen an den jungen Grafen Eugen Wrbna
:
Wien
,
Johann Thomas Edlen von Trattern
,
50
p.
Haidinger
,
K.
,
1782
,
Eintheilung der kaiserl. königl. Naturaliensammlung zu Wien
:
Vienna
,
Friedrich Christian Wappler
,
104
p.
Hamann
,
G.
,
1976
,
Das Naturhistorische Museum in Wien
.
Die Geschichte der Wiener naturhistorischen Sammlungen bis zum Ende der Monarchie
 :
Wien
,
Veröffentlichungen aus dem Naturhistorischen Museum, Neue Folge
13
,
98
p.
Harzhauser
,
M.
, and
Landau
,
B.
,
2012
,
A revision of the Neogene Cancellariid Gastropods of the Paratethys Sea
:
Zootaxa
, v.
3472
, p.
1
72
.
Harzhauser
,
M.
, and
Landau
,
B.M.
,
2016
,
A revision of the Neogene Conidae and Conorbidae (Gastropoda) of the Paratethys Sea
:
Zootaxa
, v.
4210
, p.
1
178
, doi:10.11646/zootaxa.4210.1.1.
Harzhauser
,
M.
, and
Piller
,
W.E.
,
2007
,
Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the central Paratethys during the Miocene
:
Palaeogeography, Palaeoclimatology, Palaeoecology
 , v.
253
, p.
8
31
, doi:10.1016/j.palaeo.2007.03.031.
Hassmann
,
E.
,
2015
,
Quellen und Regesten zur Schatzkammer, Gemäldegalerie und zu den drei Kabinetten aus dem Archivbestand des k.k. Oberstkämmereramtes 1777 bis 1787 mit einem Nachtrag zu den Jahren 1748 bis 1776
:
Wien
,
Jahrbuch des Kunsthistorischen Museums Wien
, v.
15–16
,
403
p.
Hazen
,
R.M.
,
Papineau
,
D.
,
Bleeker
,
W.
,
Downs
,
R.T.
,
Ferry
,
J.M.
,
McCoy
,
T.J.
,
Sverjensky
,
D.A.
, and
Yang
,
H.
,
2008
,
Mineral evolution: The American Mineralogist
, v.
93
, p.
1693
1720
, doi:10.2138/am.2008.2955.
Hochstetter
,
F.
,
1884
,
Die Geschichte des Hof-Mineraliencabinets und seiner Sammlungen
.
Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
34
, p.
263
298
.
Hoernes
,
R.
,
1890
,
Versteinerungen aus dem miocänen Tegel von Walbersdorf: Verhandlungen der k.k
:
Geologischen Reichsanstalt
, v.
1890
, p.
129
131
.
Hoernes
,
R.
, and
Auinger
,
M.
,
1879–1891
,
Die Gastropoden der Meeresablagerungen der ersten und zweiten Miozänen Mediterranstufe in der österreichischen-ungarischen Monarchie
:
Abhandlungen der k.k.
geologischen Reichsanstalt
, v.
12
, p.
1
382
.
Hoppe
,
G.
,
1982
,
E.F.F. Chladni—Über den kosmischen Ursprung der Meteorite und Feuerkugeln (1794)
, in
Goetz
,
D.
, ed.,
Ostwalds Klassiker der exakten Wissenschaften (zweite Auflage)
:
Leipzig, Akademische Verlagsgesellschaft Geest & Portig K.-G.
,
104
p.
Hörnes
,
M.
,
1851
, 1856,
Die fossilen Mollusken des Tertiär-Beckens von Wien. I. Band
.
Univalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
3
, p.
1
736
.
Hörnes
,
M.
,
1853
,
Mittheilungen an Professor Bronn gerichtet: Neues Jahrbuch für Mineralogie
,
Geologie
:
Geognosie und Petrefakten-Kunde
, v.
1853
, p.
806
810
.
Hörnes
,
M.
,
1859
, 1867,
Die fossilen Mollusken des Tertiär-Beckens von Wien. II. Band
.
Bivalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
4
, p.
1
430
.
Kieslinger
,
A.
,
1972
,
Die Wiener Ringstraße—Bild einer Epoche: Die Erweiterung der Inneren Stadt Wien unter Kaiser Franz Joseph: Band IV
:
Die Steine der Wiener Ringstraße
:
Wiesbaden, Steiner
,
665
p.
Küchelbecker
,
J.B.
,
1730
,
Johann Basilii Kuchelbeckers allerneueste Nachricht vom Römisch-Käyserlichen Hofe
:
Nebst einer ausführlichen historischen Beschreibung der kayserlichen Residentz-Stadt Wien, und der umliegenden Oerter, theils aus den Geschichten, theils aus eigener Erfahrung zusammen getragen und mit saubern Kupffern ans Licht gegeben
 :
Hanover
,
Förster
,
884
p.
Lhotsky
A.
,
1941–1945
,
Festschrift des Kunsthistorischen Museums. Zur Feier des fünfzigjährigen Bestandes 2
.
Teil: Die Geschichte der Sammlungen, Horn
 ,
Austria
,
Verlag Ferdinand Berger
,
412
p.
Lualdi
A.
,
1996
,
Francois de Baillou, un ottico della Milano Teresiana
:
Nuncius Annali di Soria della Scienza XI, fasc. 2
 ,
Firenze
, p.
613
630
.
Lyell
,
C.
,
1830–1833
,
Principles of Geology: Being an attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation
:
London
,
John Murray
, v.
1
(
1830
),
511
p., v. 2 (1832), 398 +
109
p., v. 3 (1833),
330
p.
Mambriani
,
C.
,
1994
,
La Versaglia dei duchi di Parma: Prototipi e metamorfosi die giardini di Colorno
:
I giardini del “Principe” IV Convegno Internazionale
 .
Parchi e giardini storici, parchi letterari
,
Roma
, p.
149
158
.
Marvin
,
U.
,
2006
,
Meteorites in history: An overview from the Renaissance to the 20th century
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
15
71
.
Moser
,
J.
,
1808
,
Darstellung der physisch-chemischen Eigenschaften der, welche am 22
.
Mai 1808 bei und in Stannern in Mähren aus der Luft gefallen sind: Annalen der Physik
 , v.
29
, p.
309
327
, doi:10.1002/andp.18080290705.
Neubauer
,
T.A.
,
Harzhauser
,
M.
, and
Kroh
,
A.
,
2013
,
Phenotypic evolution in a fossil gastropod species lineage: Evidence for adaptive radiation?: Palaeogeography
,
Palaeoclimatology, Palaeoecology
 , v.
370
, p.
117
126
, doi:10.1016/j.palaeo.2012.11.025.
Neumayr
,
M.
, and
Paul
,
C.M.
,
1875
,
Die Congerien- und Paludienschichten Slavoniens und deren Faunen: Abhandlungen der k.k
.:
Geologischen Reichsanstalt
, v.
7
, p.
1
106
.
Niedermayer
,
G.
,
1984
,
Der Blumenstrauß aus Stein
:
Magma
, v.
2
, p.
82
83
.
Paneth
,
F.A.
,
1960
,
The discovery and earliest reproductions of the Widmanstätten figures: Geochimica et Cosmochimica Acta
, v.
18
, p.
176
180
, https://doi.org/10.1016/0016-7037(
60
)
90085
5
.
Pärr
,
N.
,
2013
,
Maximilian Hell und sein wissenschaftliches Umfeld in Wien des 18
.
Jahrhunderts
:
Religionsgeschichte der Frühen Neuzeit
, v.
14
,
333
p.
Partsch
,
P.
,
1843
,
Die Meteoriten oder vom Himmel gefallenen Steine und Eisenmassen im k.k. Hof-Mineralienkabinette zu Wien
:
Wien
,
Kaulfuss Witwe, Prandel & Company
,
162
p.
Prévost
,
C.
,
1820
,
Essai sur la constitution physique et geognostique du bassin a l’ouverture duquel est situee la ville de Vienne en Autriche
:
Journal de Physique, Chimie, d’Histoire naturelle et sur les Arts et Métiers
 , v.
92
, p.
428
434
.
Riedl-Dorn
,
C.
,
1998
,
Das Haus der Wunder
.
Zur Geschichte des Naturhistorischen Museums in Wien
:
Vienna, Holzhausen
,
308
p.
Riedl-Dorn
,
C.
,
2000
,
Chevalier de Baillou und das Naturalienkabinett
, in
Zedinger
,
R.
, ed.,
Lothringens Erbe
,
St. Pölten, self-published
, p.
111
123
.
Riedl-Dorn
,
C.
,
2001
,
Franz Stephan als Förderer naturwissenschaftlicher Aktivitäten
, in
Kowalská
,
E.
, and
Celková
,
M.
, eds.,
Zlatá a strieborná cesta cisára Frantiska Stefana Lotrinského po stredoslovenských banských mestách
 :
Slovakia
,
Banská Stiavnica
, p.
29
39
.
Sacco
,
F.
,
1894
,
I molluschi dei terreni terziarii del Piemonte e della Liguria
.
Parte 16: Fam. Cancellariidae H. e A. Adams 1853
 :
Bollettino dei Musei di Zoologia ed Anatomia comparata della Reale Universita di Torino
, v.
9
, no.
171
, p.
68
70
.
Saint-Laurent
,
J.
,
1746
,
Déscriptions abregée du fameux cabinet des M. le Chevalier de Baillou pour servir à l’histoire naturelle des pierres précieuses, métaux, minéraux et autres fossils
:
Luques [Lucca, Tuscany]
,
Sauveur & Jean-Dominique Marescandoli
,
156
p.
Scholler
,
H.
,
1953
,
Carl Franz Anton Ritter von Schreibers
.
Zur 100
 .
Wiederkehr seines Todestages
:
Annalen des Naturhistorischen Museums in Wien
, v.
59
, p.
23
48
.
Schönburg-Hartenstein
,
J.
,
1987
,
Josef Anton Nagel—ein Direktor des physikalischen Kabinettes
:
Vienna
,
Verlag der österreichischen Akademie der Wissenschaften
,
113
p.
Schreibers
,
C.
,
1819
,
Anhang-Verzeichnis der Sammlung von Meteor=Massen, welche sich im k.k. Hof-Mineralien-Cabinette in Wien befindet
, in
Chladni
,
E.F.F.
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
 :
Wien
,
Heubner
, p.
425
434
.
Schreibers
,
C.
,
1820
,
Beytrage zur Geschichte und Kenntnis meteorischer Stein-und Metall-Massen, und der Erscheinungen, welche deren Niederfallen zu begleiten pf1egen
:
Wien
,
Heubner
,
97
p.
Schreibers
,
K. v.
,
1808
,
Nachrichten von dem Steinregen, der sich am 22sten Mai 1808 in und um Stannern in Mähren ereignet hat
:
Annalen der Physik
, v.
29
, p.
225
250
, doi:10.1002/andp.18080290702.
Schreibers
,
K. v.
,
1809
,
Beschreibung der mährischen Meteorsteine nach ihrem Aeußern, vorzüglich der Rinde, und nach ihrer Masse, und einige Folgerungen, auf welche diese Beschreibung führt
:
Annalen der Physik
, v.
31
, p.
23
77
, doi:10.1002/andp.18090310103.
Stur
,
D.
,
1870
,
Beiträge zur Kenntniss der stratigraphischen Verhältnisse der marinen Stufe des Wiener Beckens: Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
20
, p.
303
342
.
Stütz
,
A.
,
1790
,
Ueber einige vorgeblich vom Himmel gefallene Steine
, in
Born
,
I.
, and
Trebra
,
F.W.H.
, eds.,
Bergbaukunde, zweyter Band
:
Leipzig, Georg Joachim Goeschen
, p.
398
409
.
Stütz
,
A.
,
1807
,
Mineralogisches Taschenbuch enthaltend eine Oryctographie von Unterösterreich; zum Gebrauche reisender Mineralogen
:
Wien and Triest
,
Geistinger’s Buchhandlung
,
394
p.
Troili
,
D.
,
1766
,
Della Caduta di un Sasso dall’Aria
,
Ragionamento
:
Modena
,
120
p.
Tromballa
,
T.
,
1953
,
Franz Stephan und sein Kreis: Beiträge zur Kulturgeschichte des Hauses Habsburg-Lothringen [Ph.D. thesis]
:
Vienna
,
University of Vienna
,
288
p.
Vauquelin
,
L.N.
,
1809
,
De la aerolite tombée à Stannern en Moravie, le 22 Mai 1808
:
Annales de Chimie et de Physique
 , v.
70
, p.
321
330
.
Wandruszka
,
A.
,
1962
,
Die Habsburg-Lothringer und die Naturwissenschaften, Mitteilungen des Instituts für Österreichische Geschichtsforschung 70
:
Vienna
,
Böhlau Verlag
, p.
355
364
.
Zedinger
,
R.
,
2009
,
“Kaiserliche Wunschliste”: Die Instruktion für Nikolaus Joseph Jacquin
, in
Zedinger
,
R.
, and
Schmale
,
W.
, eds.,
Franz Stephan von Lothringen und sein Kreis/L’empereur François Ier et le réseau lorrain/L’imperatore Francesco I e il circolo lorenese
 :
Das Achtzehnte Jahrhundert und Österreich Band
23
, p.
293
300
.
Zuschin
,
M.
,
Harzhauser
,
M.
,
Hengst
,
B.
,
Mandic
,
O.
, and
Roetzel
,
R.
,
2013
,
Long-term ecosystem stability in an Early Miocene estuary
:
Geology
 , v.
42
, p.
7
10
, https://doi.org/10.1130/G34761.1.

REFERENCES CITED

Bauer
,
A.
,
1883
,
Chemie und Alchemy in Österreich bis zum beginnenden XIX
:
Jahrhundert
:
Vienna, R. Lechner
,
85
p.
Bergmann
,
J.
,
1856
,
Pflege der Numismatik in Oesterreich im XVIII, und XIX
:
Wien, Jahrhundert mit besonderem Hinblick auf das k. k. Münz- und Medaillencabinet
in
Wien
,
80
p.
Berwerth
,
F.
,
1918
,
Die Meteoritensammlung des Naturhistorischen Hofmuseums als Born der Meteoritenkunde: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, phil.-hist
.
Classe
 , v.
19
, p.
31
108
.
Blöchinger von Bannholz
,
C.F.
,
1864
,
Der Oberstlieutenant Chevalier de Baillou und die Entstehung des k.k
:
Hof-Naturalien-Cabinets zu Wien
:
Vienna, Österreichische Militärzeitschrift
, v.
3
, p.
273
284
.
Blöchlinger
von Bannholz
,
C.F.
,
1868
,
Chevalier Jean de Baillou, erster Director des k. k. Hof-Naturalien-Cabinets in Wien und Oberstlieutenant in der Artillerie
.
Ein Beitrag zur Geschichte der Gelehrten, der Kunst und der Erfindungen
 :
Wien
,
E. Schlieper
,
52
p.
Born
,
I.
,
1780
,
Musaei Caesarei Vindobonensis Testacea, quae jussu Mariae Theresiae disposiuit
:
Vienna
,
Gerold
,
442
p., doi:10.5962/bhl.title.119974.
Brandstätter
,
F.
,
2006
,
History of the meteorite collection of the Natural History Museum of Vienna
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
123
133
.
Brezina
,
A.
,
1885
,
Die Meteoritensammlung des Kaiserlichen königlichen mineralogischen Hofcabinetes in Wien am I. Mai 1885
:
Wien
,
Jahrbuch der Kaiserlichen königlichen geologischen Reichsanstalt
, v.
35
, p.
151
276
.
Burke
,
J.G.
,
1986
,
Cosmic Debris: Meteorites in History
:
Berkeley
,
University of California Press
,
445
p.
Chladni
,
E.F.F.
,
1794
,
Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen
:
Riga
,
Johann Friedrich Hartknoch
,
63
p.
Chladni
,
E.F.F.
,
1819
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
:
Wien, J.G. Heubner
,
434
p.
Cohen
,
K.M.
,
Finney
,
S.C.
,
Gibbard
,
P.L.
, and
Fan
,
J.-X.
,
2013
,
The ICS International Chronostratigraphic Chart: Episodes
, v.
36
, p.
199
204
.
Darwin
,
F.
,
1887
,
Charles Darwin: Life and Letters
 :
London
,
John Murray
, v.
2
,
398
p.
Dobzhansky
,
T.
,
1973
,
Nothing in biology makes sense except in the light of evolution: The American Biology Teacher
, v.
35
, p.
125
129
, doi:10.2307/4444260.
Fitzinger
,
L.J.
,
1856
,
Geschichte des kaiserlich-königlichen Hof-Naturalien-Cabinetes zu Wien 1. Abteilung
:
Älteste Periode bis zum Tode Kaiser Leopold II. 1792
 :
Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserl
:
Akademie der Wissenschaften
, v.
21
, p.
433
479
.
Fitzinger
,
L.J.
,
1868a
,
Geschichte des kais. kön. Hof-Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVII
, p.
1013
1092
.
Fitzinger
,
L.J.
,
1868b
,
Geschichte des kais. kön. Hof- Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVIII
, p.
35
120
.
Fleischer
,
K.
1932
,
Das kunstgeschichtliche Material der geheimen Kammerzahlamtsbücher in den staatlichen Archiven Wiens von 1705 bis 1790
:
Quellenschriften zur barocken Kunst in Österreich und Ungarn
 :
Wien
,
Krystall-Verlag
, v.
1
.
Fuchs
,
T.
,
1872
,
Ueber den sogenannten “chaotischen Polymorphismus” und einige fossile Melanopsis-Arten
:
Verhandlungen d. k. k. zoolog.-botanischen Gesellschaft
 , v.
22
, p.
3
6
.
Garms-Cornides
,
E.
,
1999
,
Funktionäre und Karrieren in Italien Karls VI
, in
Mazohl-Wallnig
B.
, ed.,
Italienisches Österreich?
 :
Vienna
,
Interkulturelle Gemeinsamkeiten und nationale Differenzen vom 18. Jahrhundert bis zum Ende des Ersten Weltkrieges
, p.
207
225
.
Gradstein
,
F.M.
,
Ogg
,
J.G.
,
Schmitz
,
M.D.
, and
Ogg
,
G.M.
, eds.,
2012
,
The Geological Time Scale 2012
:
Amsterdam
,
Elsevier
,
2
vols.,
1144
p.
Grauer
,
K.J.
,
1932
,
Franz I. Stephan von Lothringen-Toskana, römisch-deutscher Kaiser
.
Sein Leben dargestellt bis zu seiner Kaiserwahl [Ph.D. thesis]
 :
Vienna
,
University of Vienna
, 97 p.
Güssmann
,
F.
,
1785
,
Lithophylacium Mitisianum—Dissertatione Praenia et Observationibus Perpetuis Physico Mineralogicis Explicatum
:
Viennae
,
Josephi Nobilis de Kurzbeck
,
632
p.
Güssmann
,
F.
,
1803
,
Über die Steinregen an den jungen Grafen Eugen Wrbna
:
Wien
,
Johann Thomas Edlen von Trattern
,
50
p.
Haidinger
,
K.
,
1782
,
Eintheilung der kaiserl. königl. Naturaliensammlung zu Wien
:
Vienna
,
Friedrich Christian Wappler
,
104
p.
Hamann
,
G.
,
1976
,
Das Naturhistorische Museum in Wien
.
Die Geschichte der Wiener naturhistorischen Sammlungen bis zum Ende der Monarchie
 :
Wien
,
Veröffentlichungen aus dem Naturhistorischen Museum, Neue Folge
13
,
98
p.
Harzhauser
,
M.
, and
Landau
,
B.
,
2012
,
A revision of the Neogene Cancellariid Gastropods of the Paratethys Sea
:
Zootaxa
, v.
3472
, p.
1
72
.
Harzhauser
,
M.
, and
Landau
,
B.M.
,
2016
,
A revision of the Neogene Conidae and Conorbidae (Gastropoda) of the Paratethys Sea
:
Zootaxa
, v.
4210
, p.
1
178
, doi:10.11646/zootaxa.4210.1.1.
Harzhauser
,
M.
, and
Piller
,
W.E.
,
2007
,
Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the central Paratethys during the Miocene
:
Palaeogeography, Palaeoclimatology, Palaeoecology
 , v.
253
, p.
8
31
, doi:10.1016/j.palaeo.2007.03.031.
Hassmann
,
E.
,
2015
,
Quellen und Regesten zur Schatzkammer, Gemäldegalerie und zu den drei Kabinetten aus dem Archivbestand des k.k. Oberstkämmereramtes 1777 bis 1787 mit einem Nachtrag zu den Jahren 1748 bis 1776
:
Wien
,
Jahrbuch des Kunsthistorischen Museums Wien
, v.
15–16
,
403
p.
Hazen
,
R.M.
,
Papineau
,
D.
,
Bleeker
,
W.
,
Downs
,
R.T.
,
Ferry
,
J.M.
,
McCoy
,
T.J.
,
Sverjensky
,
D.A.
, and
Yang
,
H.
,
2008
,
Mineral evolution: The American Mineralogist
, v.
93
, p.
1693
1720
, doi:10.2138/am.2008.2955.
Hochstetter
,
F.
,
1884
,
Die Geschichte des Hof-Mineraliencabinets und seiner Sammlungen
.
Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
34
, p.
263
298
.
Hoernes
,
R.
,
1890
,
Versteinerungen aus dem miocänen Tegel von Walbersdorf: Verhandlungen der k.k
:
Geologischen Reichsanstalt
, v.
1890
, p.
129
131
.
Hoernes
,
R.
, and
Auinger
,
M.
,
1879–1891
,
Die Gastropoden der Meeresablagerungen der ersten und zweiten Miozänen Mediterranstufe in der österreichischen-ungarischen Monarchie
:
Abhandlungen der k.k.
geologischen Reichsanstalt
, v.
12
, p.
1
382
.
Hoppe
,
G.
,
1982
,
E.F.F. Chladni—Über den kosmischen Ursprung der Meteorite und Feuerkugeln (1794)
, in
Goetz
,
D.
, ed.,
Ostwalds Klassiker der exakten Wissenschaften (zweite Auflage)
:
Leipzig, Akademische Verlagsgesellschaft Geest & Portig K.-G.
,
104
p.
Hörnes
,
M.
,
1851
, 1856,
Die fossilen Mollusken des Tertiär-Beckens von Wien. I. Band
.
Univalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
3
, p.
1
736
.
Hörnes
,
M.
,
1853
,
Mittheilungen an Professor Bronn gerichtet: Neues Jahrbuch für Mineralogie
,
Geologie
:
Geognosie und Petrefakten-Kunde
, v.
1853
, p.
806
810
.
Hörnes
,
M.
,
1859
, 1867,
Die fossilen Mollusken des Tertiär-Beckens von Wien. II. Band
.
Bivalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
4
, p.
1
430
.
Kieslinger
,
A.
,
1972
,
Die Wiener Ringstraße—Bild einer Epoche: Die Erweiterung der Inneren Stadt Wien unter Kaiser Franz Joseph: Band IV
:
Die Steine der Wiener Ringstraße
:
Wiesbaden, Steiner
,
665
p.
Küchelbecker
,
J.B.
,
1730
,
Johann Basilii Kuchelbeckers allerneueste Nachricht vom Römisch-Käyserlichen Hofe
:
Nebst einer ausführlichen historischen Beschreibung der kayserlichen Residentz-Stadt Wien, und der umliegenden Oerter, theils aus den Geschichten, theils aus eigener Erfahrung zusammen getragen und mit saubern Kupffern ans Licht gegeben
 :
Hanover
,
Förster
,
884
p.
Lhotsky
A.
,
1941–1945
,
Festschrift des Kunsthistorischen Museums. Zur Feier des fünfzigjährigen Bestandes 2
.
Teil: Die Geschichte der Sammlungen, Horn
 ,
Austria
,
Verlag Ferdinand Berger
,
412
p.
Lualdi
A.
,
1996
,
Francois de Baillou, un ottico della Milano Teresiana
:
Nuncius Annali di Soria della Scienza XI, fasc. 2
 ,
Firenze
, p.
613
630
.
Lyell
,
C.
,
1830–1833
,
Principles of Geology: Being an attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation
:
London
,
John Murray
, v.
1
(
1830
),
511
p., v. 2 (1832), 398 +
109
p., v. 3 (1833),
330
p.
Mambriani
,
C.
,
1994
,
La Versaglia dei duchi di Parma: Prototipi e metamorfosi die giardini di Colorno
:
I giardini del “Principe” IV Convegno Internazionale
 .
Parchi e giardini storici, parchi letterari
,
Roma
, p.
149
158
.
Marvin
,
U.
,
2006
,
Meteorites in history: An overview from the Renaissance to the 20th century
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
15
71
.
Moser
,
J.
,
1808
,
Darstellung der physisch-chemischen Eigenschaften der, welche am 22
.
Mai 1808 bei und in Stannern in Mähren aus der Luft gefallen sind: Annalen der Physik
 , v.
29
, p.
309
327
, doi:10.1002/andp.18080290705.
Neubauer
,
T.A.
,
Harzhauser
,
M.
, and
Kroh
,
A.
,
2013
,
Phenotypic evolution in a fossil gastropod species lineage: Evidence for adaptive radiation?: Palaeogeography
,
Palaeoclimatology, Palaeoecology
 , v.
370
, p.
117
126
, doi:10.1016/j.palaeo.2012.11.025.
Neumayr
,
M.
, and
Paul
,
C.M.
,
1875
,
Die Congerien- und Paludienschichten Slavoniens und deren Faunen: Abhandlungen der k.k
.:
Geologischen Reichsanstalt
, v.
7
, p.
1
106
.
Niedermayer
,
G.
,
1984
,
Der Blumenstrauß aus Stein
:
Magma
, v.
2
, p.
82
83
.
Paneth
,
F.A.
,
1960
,
The discovery and earliest reproductions of the Widmanstätten figures: Geochimica et Cosmochimica Acta
, v.
18
, p.
176
180
, https://doi.org/10.1016/0016-7037(
60
)
90085
5
.
Pärr
,
N.
,
2013
,
Maximilian Hell und sein wissenschaftliches Umfeld in Wien des 18
.
Jahrhunderts
:
Religionsgeschichte der Frühen Neuzeit
, v.
14
,
333
p.
Partsch
,
P.
,
1843
,
Die Meteoriten oder vom Himmel gefallenen Steine und Eisenmassen im k.k. Hof-Mineralienkabinette zu Wien
:
Wien
,
Kaulfuss Witwe, Prandel & Company
,
162
p.
Prévost
,
C.
,
1820
,
Essai sur la constitution physique et geognostique du bassin a l’ouverture duquel est situee la ville de Vienne en Autriche
:
Journal de Physique, Chimie, d’Histoire naturelle et sur les Arts et Métiers
 , v.
92
, p.
428
434
.
Riedl-Dorn
,
C.
,
1998
,
Das Haus der Wunder
.
Zur Geschichte des Naturhistorischen Museums in Wien
:
Vienna, Holzhausen
,
308
p.
Riedl-Dorn
,
C.
,
2000
,
Chevalier de Baillou und das Naturalienkabinett
, in
Zedinger
,
R.
, ed.,
Lothringens Erbe
,
St. Pölten, self-published
, p.
111
123
.
Riedl-Dorn
,
C.
,
2001
,
Franz Stephan als Förderer naturwissenschaftlicher Aktivitäten
, in
Kowalská
,
E.
, and
Celková
,
M.
, eds.,
Zlatá a strieborná cesta cisára Frantiska Stefana Lotrinského po stredoslovenských banských mestách
 :
Slovakia
,
Banská Stiavnica
, p.
29
39
.
Sacco
,
F.
,
1894
,
I molluschi dei terreni terziarii del Piemonte e della Liguria
.
Parte 16: Fam. Cancellariidae H. e A. Adams 1853
 :
Bollettino dei Musei di Zoologia ed Anatomia comparata della Reale Universita di Torino
, v.
9
, no.
171
, p.
68
70
.
Saint-Laurent
,
J.
,
1746
,
Déscriptions abregée du fameux cabinet des M. le Chevalier de Baillou pour servir à l’histoire naturelle des pierres précieuses, métaux, minéraux et autres fossils
:
Luques [Lucca, Tuscany]
,
Sauveur & Jean-Dominique Marescandoli
,
156
p.
Scholler
,
H.
,
1953
,
Carl Franz Anton Ritter von Schreibers
.
Zur 100
 .
Wiederkehr seines Todestages
:
Annalen des Naturhistorischen Museums in Wien
, v.
59
, p.
23
48
.
Schönburg-Hartenstein
,
J.
,
1987
,
Josef Anton Nagel—ein Direktor des physikalischen Kabinettes
:
Vienna
,
Verlag der österreichischen Akademie der Wissenschaften
,
113
p.
Schreibers
,
C.
,
1819
,
Anhang-Verzeichnis der Sammlung von Meteor=Massen, welche sich im k.k. Hof-Mineralien-Cabinette in Wien befindet
, in
Chladni
,
E.F.F.
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
 :
Wien
,
Heubner
, p.
425
434
.
Schreibers
,
C.
,
1820
,
Beytrage zur Geschichte und Kenntnis meteorischer Stein-und Metall-Massen, und der Erscheinungen, welche deren Niederfallen zu begleiten pf1egen
:
Wien
,
Heubner
,
97
p.
Schreibers
,
K. v.
,
1808
,
Nachrichten von dem Steinregen, der sich am 22sten Mai 1808 in und um Stannern in Mähren ereignet hat
:
Annalen der Physik
, v.
29
, p.
225
250
, doi:10.1002/andp.18080290702.
Schreibers
,
K. v.
,
1809
,
Beschreibung der mährischen Meteorsteine nach ihrem Aeußern, vorzüglich der Rinde, und nach ihrer Masse, und einige Folgerungen, auf welche diese Beschreibung führt
:
Annalen der Physik
, v.
31
, p.
23
77
, doi:10.1002/andp.18090310103.
Stur
,
D.
,
1870
,
Beiträge zur Kenntniss der stratigraphischen Verhältnisse der marinen Stufe des Wiener Beckens: Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
20
, p.
303
342
.
Stütz
,
A.
,
1790
,
Ueber einige vorgeblich vom Himmel gefallene Steine
, in
Born
,
I.
, and
Trebra
,
F.W.H.
, eds.,
Bergbaukunde, zweyter Band
:
Leipzig, Georg Joachim Goeschen
, p.
398
409
.
Stütz
,
A.
,
1807
,
Mineralogisches Taschenbuch enthaltend eine Oryctographie von Unterösterreich; zum Gebrauche reisender Mineralogen
:
Wien and Triest
,
Geistinger’s Buchhandlung
,
394
p.
Troili
,
D.
,
1766
,
Della Caduta di un Sasso dall’Aria
,
Ragionamento
:
Modena
,
120
p.
Tromballa
,
T.
,
1953
,
Franz Stephan und sein Kreis: Beiträge zur Kulturgeschichte des Hauses Habsburg-Lothringen [Ph.D. thesis]
:
Vienna
,
University of Vienna
,
288
p.
Vauquelin
,
L.N.
,
1809
,
De la aerolite tombée à Stannern en Moravie, le 22 Mai 1808
:
Annales de Chimie et de Physique
 , v.
70
, p.
321
330
.
Wandruszka
,
A.
,
1962
,
Die Habsburg-Lothringer und die Naturwissenschaften, Mitteilungen des Instituts für Österreichische Geschichtsforschung 70
:
Vienna
,
Böhlau Verlag
, p.
355
364
.
Zedinger
,
R.
,
2009
,
“Kaiserliche Wunschliste”: Die Instruktion für Nikolaus Joseph Jacquin
, in
Zedinger
,
R.
, and
Schmale
,
W.
, eds.,
Franz Stephan von Lothringen und sein Kreis/L’empereur François Ier et le réseau lorrain/L’imperatore Francesco I e il circolo lorenese
 :
Das Achtzehnte Jahrhundert und Österreich Band
23
, p.
293
300
.
Zuschin
,
M.
,
Harzhauser
,
M.
,
Hengst
,
B.
,
Mandic
,
O.
, and
Roetzel
,
R.
,
2013
,
Long-term ecosystem stability in an Early Miocene estuary
:
Geology
 , v.
42
, p.
7
10
, https://doi.org/10.1130/G34761.1.

REFERENCES CITED

Bauer
,
A.
,
1883
,
Chemie und Alchemy in Österreich bis zum beginnenden XIX
:
Jahrhundert
:
Vienna, R. Lechner
,
85
p.
Bergmann
,
J.
,
1856
,
Pflege der Numismatik in Oesterreich im XVIII, und XIX
:
Wien, Jahrhundert mit besonderem Hinblick auf das k. k. Münz- und Medaillencabinet
in
Wien
,
80
p.
Berwerth
,
F.
,
1918
,
Die Meteoritensammlung des Naturhistorischen Hofmuseums als Born der Meteoritenkunde: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, phil.-hist
.
Classe
 , v.
19
, p.
31
108
.
Blöchinger von Bannholz
,
C.F.
,
1864
,
Der Oberstlieutenant Chevalier de Baillou und die Entstehung des k.k
:
Hof-Naturalien-Cabinets zu Wien
:
Vienna, Österreichische Militärzeitschrift
, v.
3
, p.
273
284
.
Blöchlinger
von Bannholz
,
C.F.
,
1868
,
Chevalier Jean de Baillou, erster Director des k. k. Hof-Naturalien-Cabinets in Wien und Oberstlieutenant in der Artillerie
.
Ein Beitrag zur Geschichte der Gelehrten, der Kunst und der Erfindungen
 :
Wien
,
E. Schlieper
,
52
p.
Born
,
I.
,
1780
,
Musaei Caesarei Vindobonensis Testacea, quae jussu Mariae Theresiae disposiuit
:
Vienna
,
Gerold
,
442
p., doi:10.5962/bhl.title.119974.
Brandstätter
,
F.
,
2006
,
History of the meteorite collection of the Natural History Museum of Vienna
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
123
133
.
Brezina
,
A.
,
1885
,
Die Meteoritensammlung des Kaiserlichen königlichen mineralogischen Hofcabinetes in Wien am I. Mai 1885
:
Wien
,
Jahrbuch der Kaiserlichen königlichen geologischen Reichsanstalt
, v.
35
, p.
151
276
.
Burke
,
J.G.
,
1986
,
Cosmic Debris: Meteorites in History
:
Berkeley
,
University of California Press
,
445
p.
Chladni
,
E.F.F.
,
1794
,
Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen
:
Riga
,
Johann Friedrich Hartknoch
,
63
p.
Chladni
,
E.F.F.
,
1819
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
:
Wien, J.G. Heubner
,
434
p.
Cohen
,
K.M.
,
Finney
,
S.C.
,
Gibbard
,
P.L.
, and
Fan
,
J.-X.
,
2013
,
The ICS International Chronostratigraphic Chart: Episodes
, v.
36
, p.
199
204
.
Darwin
,
F.
,
1887
,
Charles Darwin: Life and Letters
 :
London
,
John Murray
, v.
2
,
398
p.
Dobzhansky
,
T.
,
1973
,
Nothing in biology makes sense except in the light of evolution: The American Biology Teacher
, v.
35
, p.
125
129
, doi:10.2307/4444260.
Fitzinger
,
L.J.
,
1856
,
Geschichte des kaiserlich-königlichen Hof-Naturalien-Cabinetes zu Wien 1. Abteilung
:
Älteste Periode bis zum Tode Kaiser Leopold II. 1792
 :
Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserl
:
Akademie der Wissenschaften
, v.
21
, p.
433
479
.
Fitzinger
,
L.J.
,
1868a
,
Geschichte des kais. kön. Hof-Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVII
, p.
1013
1092
.
Fitzinger
,
L.J.
,
1868b
,
Geschichte des kais. kön. Hof- Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVIII
, p.
35
120
.
Fleischer
,
K.
1932
,
Das kunstgeschichtliche Material der geheimen Kammerzahlamtsbücher in den staatlichen Archiven Wiens von 1705 bis 1790
:
Quellenschriften zur barocken Kunst in Österreich und Ungarn
 :
Wien
,
Krystall-Verlag
, v.
1
.
Fuchs
,
T.
,
1872
,
Ueber den sogenannten “chaotischen Polymorphismus” und einige fossile Melanopsis-Arten
:
Verhandlungen d. k. k. zoolog.-botanischen Gesellschaft
 , v.
22
, p.
3
6
.
Garms-Cornides
,
E.
,
1999
,
Funktionäre und Karrieren in Italien Karls VI
, in
Mazohl-Wallnig
B.
, ed.,
Italienisches Österreich?
 :
Vienna
,
Interkulturelle Gemeinsamkeiten und nationale Differenzen vom 18. Jahrhundert bis zum Ende des Ersten Weltkrieges
, p.
207
225
.
Gradstein
,
F.M.
,
Ogg
,
J.G.
,
Schmitz
,
M.D.
, and
Ogg
,
G.M.
, eds.,
2012
,
The Geological Time Scale 2012
:
Amsterdam
,
Elsevier
,
2
vols.,
1144
p.
Grauer
,
K.J.
,
1932
,
Franz I. Stephan von Lothringen-Toskana, römisch-deutscher Kaiser
.
Sein Leben dargestellt bis zu seiner Kaiserwahl [Ph.D. thesis]
 :
Vienna
,
University of Vienna
, 97 p.
Güssmann
,
F.
,
1785
,
Lithophylacium Mitisianum—Dissertatione Praenia et Observationibus Perpetuis Physico Mineralogicis Explicatum
:
Viennae
,
Josephi Nobilis de Kurzbeck
,
632
p.
Güssmann
,
F.
,
1803
,
Über die Steinregen an den jungen Grafen Eugen Wrbna
:
Wien
,
Johann Thomas Edlen von Trattern
,
50
p.
Haidinger
,
K.
,
1782
,
Eintheilung der kaiserl. königl. Naturaliensammlung zu Wien
:
Vienna
,
Friedrich Christian Wappler
,
104
p.
Hamann
,
G.
,
1976
,
Das Naturhistorische Museum in Wien
.
Die Geschichte der Wiener naturhistorischen Sammlungen bis zum Ende der Monarchie
 :
Wien
,
Veröffentlichungen aus dem Naturhistorischen Museum, Neue Folge
13
,
98
p.
Harzhauser
,
M.
, and
Landau
,
B.
,
2012
,
A revision of the Neogene Cancellariid Gastropods of the Paratethys Sea
:
Zootaxa
, v.
3472
, p.
1
72
.
Harzhauser
,
M.
, and
Landau
,
B.M.
,
2016
,
A revision of the Neogene Conidae and Conorbidae (Gastropoda) of the Paratethys Sea
:
Zootaxa
, v.
4210
, p.
1
178
, doi:10.11646/zootaxa.4210.1.1.
Harzhauser
,
M.
, and
Piller
,
W.E.
,
2007
,
Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the central Paratethys during the Miocene
:
Palaeogeography, Palaeoclimatology, Palaeoecology
 , v.
253
, p.
8
31
, doi:10.1016/j.palaeo.2007.03.031.
Hassmann
,
E.
,
2015
,
Quellen und Regesten zur Schatzkammer, Gemäldegalerie und zu den drei Kabinetten aus dem Archivbestand des k.k. Oberstkämmereramtes 1777 bis 1787 mit einem Nachtrag zu den Jahren 1748 bis 1776
:
Wien
,
Jahrbuch des Kunsthistorischen Museums Wien
, v.
15–16
,
403
p.
Hazen
,
R.M.
,
Papineau
,
D.
,
Bleeker
,
W.
,
Downs
,
R.T.
,
Ferry
,
J.M.
,
McCoy
,
T.J.
,
Sverjensky
,
D.A.
, and
Yang
,
H.
,
2008
,
Mineral evolution: The American Mineralogist
, v.
93
, p.
1693
1720
, doi:10.2138/am.2008.2955.
Hochstetter
,
F.
,
1884
,
Die Geschichte des Hof-Mineraliencabinets und seiner Sammlungen
.
Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
34
, p.
263
298
.
Hoernes
,
R.
,
1890
,
Versteinerungen aus dem miocänen Tegel von Walbersdorf: Verhandlungen der k.k
:
Geologischen Reichsanstalt
, v.
1890
, p.
129
131
.
Hoernes
,
R.
, and
Auinger
,
M.
,
1879–1891
,
Die Gastropoden der Meeresablagerungen der ersten und zweiten Miozänen Mediterranstufe in der österreichischen-ungarischen Monarchie
:
Abhandlungen der k.k.
geologischen Reichsanstalt
, v.
12
, p.
1
382
.
Hoppe
,
G.
,
1982
,
E.F.F. Chladni—Über den kosmischen Ursprung der Meteorite und Feuerkugeln (1794)
, in
Goetz
,
D.
, ed.,
Ostwalds Klassiker der exakten Wissenschaften (zweite Auflage)
:
Leipzig, Akademische Verlagsgesellschaft Geest & Portig K.-G.
,
104
p.
Hörnes
,
M.
,
1851
, 1856,
Die fossilen Mollusken des Tertiär-Beckens von Wien. I. Band
.
Univalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
3
, p.
1
736
.
Hörnes
,
M.
,
1853
,
Mittheilungen an Professor Bronn gerichtet: Neues Jahrbuch für Mineralogie
,
Geologie
:
Geognosie und Petrefakten-Kunde
, v.
1853
, p.
806
810
.
Hörnes
,
M.
,
1859
, 1867,
Die fossilen Mollusken des Tertiär-Beckens von Wien. II. Band
.
Bivalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
4
, p.
1
430
.
Kieslinger
,
A.
,
1972
,
Die Wiener Ringstraße—Bild einer Epoche: Die Erweiterung der Inneren Stadt Wien unter Kaiser Franz Joseph: Band IV
:
Die Steine der Wiener Ringstraße
:
Wiesbaden, Steiner
,
665
p.
Küchelbecker
,
J.B.
,
1730
,
Johann Basilii Kuchelbeckers allerneueste Nachricht vom Römisch-Käyserlichen Hofe
:
Nebst einer ausführlichen historischen Beschreibung der kayserlichen Residentz-Stadt Wien, und der umliegenden Oerter, theils aus den Geschichten, theils aus eigener Erfahrung zusammen getragen und mit saubern Kupffern ans Licht gegeben
 :
Hanover
,
Förster
,
884
p.
Lhotsky
A.
,
1941–1945
,
Festschrift des Kunsthistorischen Museums. Zur Feier des fünfzigjährigen Bestandes 2
.
Teil: Die Geschichte der Sammlungen, Horn
 ,
Austria
,
Verlag Ferdinand Berger
,
412
p.
Lualdi
A.
,
1996
,
Francois de Baillou, un ottico della Milano Teresiana
:
Nuncius Annali di Soria della Scienza XI, fasc. 2
 ,
Firenze
, p.
613
630
.
Lyell
,
C.
,
1830–1833
,
Principles of Geology: Being an attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation
:
London
,
John Murray
, v.
1
(
1830
),
511
p., v. 2 (1832), 398 +
109
p., v. 3 (1833),
330
p.
Mambriani
,
C.
,
1994
,
La Versaglia dei duchi di Parma: Prototipi e metamorfosi die giardini di Colorno
:
I giardini del “Principe” IV Convegno Internazionale
 .
Parchi e giardini storici, parchi letterari
,
Roma
, p.
149
158
.
Marvin
,
U.
,
2006
,
Meteorites in history: An overview from the Renaissance to the 20th century
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
15
71
.
Moser
,
J.
,
1808
,
Darstellung der physisch-chemischen Eigenschaften der, welche am 22
.
Mai 1808 bei und in Stannern in Mähren aus der Luft gefallen sind: Annalen der Physik
 , v.
29
, p.
309
327
, doi:10.1002/andp.18080290705.
Neubauer
,
T.A.
,
Harzhauser
,
M.
, and
Kroh
,
A.
,
2013
,
Phenotypic evolution in a fossil gastropod species lineage: Evidence for adaptive radiation?: Palaeogeography
,
Palaeoclimatology, Palaeoecology
 , v.
370
, p.
117
126
, doi:10.1016/j.palaeo.2012.11.025.
Neumayr
,
M.
, and
Paul
,
C.M.
,
1875
,
Die Congerien- und Paludienschichten Slavoniens und deren Faunen: Abhandlungen der k.k
.:
Geologischen Reichsanstalt
, v.
7
, p.
1
106
.
Niedermayer
,
G.
,
1984
,
Der Blumenstrauß aus Stein
:
Magma
, v.
2
, p.
82
83
.
Paneth
,
F.A.
,
1960
,
The discovery and earliest reproductions of the Widmanstätten figures: Geochimica et Cosmochimica Acta
, v.
18
, p.
176
180
, https://doi.org/10.1016/0016-7037(
60
)
90085
5
.
Pärr
,
N.
,
2013
,
Maximilian Hell und sein wissenschaftliches Umfeld in Wien des 18
.
Jahrhunderts
:
Religionsgeschichte der Frühen Neuzeit
, v.
14
,
333
p.
Partsch
,
P.
,
1843
,
Die Meteoriten oder vom Himmel gefallenen Steine und Eisenmassen im k.k. Hof-Mineralienkabinette zu Wien
:
Wien
,
Kaulfuss Witwe, Prandel & Company
,
162
p.
Prévost
,
C.
,
1820
,
Essai sur la constitution physique et geognostique du bassin a l’ouverture duquel est situee la ville de Vienne en Autriche
:
Journal de Physique, Chimie, d’Histoire naturelle et sur les Arts et Métiers
 , v.
92
, p.
428
434
.
Riedl-Dorn
,
C.
,
1998
,
Das Haus der Wunder
.
Zur Geschichte des Naturhistorischen Museums in Wien
:
Vienna, Holzhausen
,
308
p.
Riedl-Dorn
,
C.
,
2000
,
Chevalier de Baillou und das Naturalienkabinett
, in
Zedinger
,
R.
, ed.,
Lothringens Erbe
,
St. Pölten, self-published
, p.
111
123
.
Riedl-Dorn
,
C.
,
2001
,
Franz Stephan als Förderer naturwissenschaftlicher Aktivitäten
, in
Kowalská
,
E.
, and
Celková
,
M.
, eds.,
Zlatá a strieborná cesta cisára Frantiska Stefana Lotrinského po stredoslovenských banských mestách
 :
Slovakia
,
Banská Stiavnica
, p.
29
39
.
Sacco
,
F.
,
1894
,
I molluschi dei terreni terziarii del Piemonte e della Liguria
.
Parte 16: Fam. Cancellariidae H. e A. Adams 1853
 :
Bollettino dei Musei di Zoologia ed Anatomia comparata della Reale Universita di Torino
, v.
9
, no.
171
, p.
68
70
.
Saint-Laurent
,
J.
,
1746
,
Déscriptions abregée du fameux cabinet des M. le Chevalier de Baillou pour servir à l’histoire naturelle des pierres précieuses, métaux, minéraux et autres fossils
:
Luques [Lucca, Tuscany]
,
Sauveur & Jean-Dominique Marescandoli
,
156
p.
Scholler
,
H.
,
1953
,
Carl Franz Anton Ritter von Schreibers
.
Zur 100
 .
Wiederkehr seines Todestages
:
Annalen des Naturhistorischen Museums in Wien
, v.
59
, p.
23
48
.
Schönburg-Hartenstein
,
J.
,
1987
,
Josef Anton Nagel—ein Direktor des physikalischen Kabinettes
:
Vienna
,
Verlag der österreichischen Akademie der Wissenschaften
,
113
p.
Schreibers
,
C.
,
1819
,
Anhang-Verzeichnis der Sammlung von Meteor=Massen, welche sich im k.k. Hof-Mineralien-Cabinette in Wien befindet
, in
Chladni
,
E.F.F.
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
 :
Wien
,
Heubner
, p.
425
434
.
Schreibers
,
C.
,
1820
,
Beytrage zur Geschichte und Kenntnis meteorischer Stein-und Metall-Massen, und der Erscheinungen, welche deren Niederfallen zu begleiten pf1egen
:
Wien
,
Heubner
,
97
p.
Schreibers
,
K. v.
,
1808
,
Nachrichten von dem Steinregen, der sich am 22sten Mai 1808 in und um Stannern in Mähren ereignet hat
:
Annalen der Physik
, v.
29
, p.
225
250
, doi:10.1002/andp.18080290702.
Schreibers
,
K. v.
,
1809
,
Beschreibung der mährischen Meteorsteine nach ihrem Aeußern, vorzüglich der Rinde, und nach ihrer Masse, und einige Folgerungen, auf welche diese Beschreibung führt
:
Annalen der Physik
, v.
31
, p.
23
77
, doi:10.1002/andp.18090310103.
Stur
,
D.
,
1870
,
Beiträge zur Kenntniss der stratigraphischen Verhältnisse der marinen Stufe des Wiener Beckens: Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
20
, p.
303
342
.
Stütz
,
A.
,
1790
,
Ueber einige vorgeblich vom Himmel gefallene Steine
, in
Born
,
I.
, and
Trebra
,
F.W.H.
, eds.,
Bergbaukunde, zweyter Band
:
Leipzig, Georg Joachim Goeschen
, p.
398
409
.
Stütz
,
A.
,
1807
,
Mineralogisches Taschenbuch enthaltend eine Oryctographie von Unterösterreich; zum Gebrauche reisender Mineralogen
:
Wien and Triest
,
Geistinger’s Buchhandlung
,
394
p.
Troili
,
D.
,
1766
,
Della Caduta di un Sasso dall’Aria
,
Ragionamento
:
Modena
,
120
p.
Tromballa
,
T.
,
1953
,
Franz Stephan und sein Kreis: Beiträge zur Kulturgeschichte des Hauses Habsburg-Lothringen [Ph.D. thesis]
:
Vienna
,
University of Vienna
,
288
p.
Vauquelin
,
L.N.
,
1809
,
De la aerolite tombée à Stannern en Moravie, le 22 Mai 1808
:
Annales de Chimie et de Physique
 , v.
70
, p.
321
330
.
Wandruszka
,
A.
,
1962
,
Die Habsburg-Lothringer und die Naturwissenschaften, Mitteilungen des Instituts für Österreichische Geschichtsforschung 70
:
Vienna
,
Böhlau Verlag
, p.
355
364
.
Zedinger
,
R.
,
2009
,
“Kaiserliche Wunschliste”: Die Instruktion für Nikolaus Joseph Jacquin
, in
Zedinger
,
R.
, and
Schmale
,
W.
, eds.,
Franz Stephan von Lothringen und sein Kreis/L’empereur François Ier et le réseau lorrain/L’imperatore Francesco I e il circolo lorenese
 :
Das Achtzehnte Jahrhundert und Österreich Band
23
, p.
293
300
.
Zuschin
,
M.
,
Harzhauser
,
M.
,
Hengst
,
B.
,
Mandic
,
O.
, and
Roetzel
,
R.
,
2013
,
Long-term ecosystem stability in an Early Miocene estuary
:
Geology
 , v.
42
, p.
7
10
, https://doi.org/10.1130/G34761.1.

REFERENCES CITED

Bauer
,
A.
,
1883
,
Chemie und Alchemy in Österreich bis zum beginnenden XIX
:
Jahrhundert
:
Vienna, R. Lechner
,
85
p.
Bergmann
,
J.
,
1856
,
Pflege der Numismatik in Oesterreich im XVIII, und XIX
:
Wien, Jahrhundert mit besonderem Hinblick auf das k. k. Münz- und Medaillencabinet
in
Wien
,
80
p.
Berwerth
,
F.
,
1918
,
Die Meteoritensammlung des Naturhistorischen Hofmuseums als Born der Meteoritenkunde: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, phil.-hist
.
Classe
 , v.
19
, p.
31
108
.
Blöchinger von Bannholz
,
C.F.
,
1864
,
Der Oberstlieutenant Chevalier de Baillou und die Entstehung des k.k
:
Hof-Naturalien-Cabinets zu Wien
:
Vienna, Österreichische Militärzeitschrift
, v.
3
, p.
273
284
.
Blöchlinger
von Bannholz
,
C.F.
,
1868
,
Chevalier Jean de Baillou, erster Director des k. k. Hof-Naturalien-Cabinets in Wien und Oberstlieutenant in der Artillerie
.
Ein Beitrag zur Geschichte der Gelehrten, der Kunst und der Erfindungen
 :
Wien
,
E. Schlieper
,
52
p.
Born
,
I.
,
1780
,
Musaei Caesarei Vindobonensis Testacea, quae jussu Mariae Theresiae disposiuit
:
Vienna
,
Gerold
,
442
p., doi:10.5962/bhl.title.119974.
Brandstätter
,
F.
,
2006
,
History of the meteorite collection of the Natural History Museum of Vienna
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
123
133
.
Brezina
,
A.
,
1885
,
Die Meteoritensammlung des Kaiserlichen königlichen mineralogischen Hofcabinetes in Wien am I. Mai 1885
:
Wien
,
Jahrbuch der Kaiserlichen königlichen geologischen Reichsanstalt
, v.
35
, p.
151
276
.
Burke
,
J.G.
,
1986
,
Cosmic Debris: Meteorites in History
:
Berkeley
,
University of California Press
,
445
p.
Chladni
,
E.F.F.
,
1794
,
Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen
:
Riga
,
Johann Friedrich Hartknoch
,
63
p.
Chladni
,
E.F.F.
,
1819
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
:
Wien, J.G. Heubner
,
434
p.
Cohen
,
K.M.
,
Finney
,
S.C.
,
Gibbard
,
P.L.
, and
Fan
,
J.-X.
,
2013
,
The ICS International Chronostratigraphic Chart: Episodes
, v.
36
, p.
199
204
.
Darwin
,
F.
,
1887
,
Charles Darwin: Life and Letters
 :
London
,
John Murray
, v.
2
,
398
p.
Dobzhansky
,
T.
,
1973
,
Nothing in biology makes sense except in the light of evolution: The American Biology Teacher
, v.
35
, p.
125
129
, doi:10.2307/4444260.
Fitzinger
,
L.J.
,
1856
,
Geschichte des kaiserlich-königlichen Hof-Naturalien-Cabinetes zu Wien 1. Abteilung
:
Älteste Periode bis zum Tode Kaiser Leopold II. 1792
 :
Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserl
:
Akademie der Wissenschaften
, v.
21
, p.
433
479
.
Fitzinger
,
L.J.
,
1868a
,
Geschichte des kais. kön. Hof-Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVII
, p.
1013
1092
.
Fitzinger
,
L.J.
,
1868b
,
Geschichte des kais. kön. Hof- Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVIII
, p.
35
120
.
Fleischer
,
K.
1932
,
Das kunstgeschichtliche Material der geheimen Kammerzahlamtsbücher in den staatlichen Archiven Wiens von 1705 bis 1790
:
Quellenschriften zur barocken Kunst in Österreich und Ungarn
 :
Wien
,
Krystall-Verlag
, v.
1
.
Fuchs
,
T.
,
1872
,
Ueber den sogenannten “chaotischen Polymorphismus” und einige fossile Melanopsis-Arten
:
Verhandlungen d. k. k. zoolog.-botanischen Gesellschaft
 , v.
22
, p.
3
6
.
Garms-Cornides
,
E.
,
1999
,
Funktionäre und Karrieren in Italien Karls VI
, in
Mazohl-Wallnig
B.
, ed.,
Italienisches Österreich?
 :
Vienna
,
Interkulturelle Gemeinsamkeiten und nationale Differenzen vom 18. Jahrhundert bis zum Ende des Ersten Weltkrieges
, p.
207
225
.
Gradstein
,
F.M.
,
Ogg
,
J.G.
,
Schmitz
,
M.D.
, and
Ogg
,
G.M.
, eds.,
2012
,
The Geological Time Scale 2012
:
Amsterdam
,
Elsevier
,
2
vols.,
1144
p.
Grauer
,
K.J.
,
1932
,
Franz I. Stephan von Lothringen-Toskana, römisch-deutscher Kaiser
.
Sein Leben dargestellt bis zu seiner Kaiserwahl [Ph.D. thesis]
 :
Vienna
,
University of Vienna
, 97 p.
Güssmann
,
F.
,
1785
,
Lithophylacium Mitisianum—Dissertatione Praenia et Observationibus Perpetuis Physico Mineralogicis Explicatum
:
Viennae
,
Josephi Nobilis de Kurzbeck
,
632
p.
Güssmann
,
F.
,
1803
,
Über die Steinregen an den jungen Grafen Eugen Wrbna
:
Wien
,
Johann Thomas Edlen von Trattern
,
50
p.
Haidinger
,
K.
,
1782
,
Eintheilung der kaiserl. königl. Naturaliensammlung zu Wien
:
Vienna
,
Friedrich Christian Wappler
,
104
p.
Hamann
,
G.
,
1976
,
Das Naturhistorische Museum in Wien
.
Die Geschichte der Wiener naturhistorischen Sammlungen bis zum Ende der Monarchie
 :
Wien
,
Veröffentlichungen aus dem Naturhistorischen Museum, Neue Folge
13
,
98
p.
Harzhauser
,
M.
, and
Landau
,
B.
,
2012
,
A revision of the Neogene Cancellariid Gastropods of the Paratethys Sea
:
Zootaxa
, v.
3472
, p.
1
72
.
Harzhauser
,
M.
, and
Landau
,
B.M.
,
2016
,
A revision of the Neogene Conidae and Conorbidae (Gastropoda) of the Paratethys Sea
:
Zootaxa
, v.
4210
, p.
1
178
, doi:10.11646/zootaxa.4210.1.1.
Harzhauser
,
M.
, and
Piller
,
W.E.
,
2007
,
Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the central Paratethys during the Miocene
:
Palaeogeography, Palaeoclimatology, Palaeoecology
 , v.
253
, p.
8
31
, doi:10.1016/j.palaeo.2007.03.031.
Hassmann
,
E.
,
2015
,
Quellen und Regesten zur Schatzkammer, Gemäldegalerie und zu den drei Kabinetten aus dem Archivbestand des k.k. Oberstkämmereramtes 1777 bis 1787 mit einem Nachtrag zu den Jahren 1748 bis 1776
:
Wien
,
Jahrbuch des Kunsthistorischen Museums Wien
, v.
15–16
,
403
p.
Hazen
,
R.M.
,
Papineau
,
D.
,
Bleeker
,
W.
,
Downs
,
R.T.
,
Ferry
,
J.M.
,
McCoy
,
T.J.
,
Sverjensky
,
D.A.
, and
Yang
,
H.
,
2008
,
Mineral evolution: The American Mineralogist
, v.
93
, p.
1693
1720
, doi:10.2138/am.2008.2955.
Hochstetter
,
F.
,
1884
,
Die Geschichte des Hof-Mineraliencabinets und seiner Sammlungen
.
Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
34
, p.
263
298
.
Hoernes
,
R.
,
1890
,
Versteinerungen aus dem miocänen Tegel von Walbersdorf: Verhandlungen der k.k
:
Geologischen Reichsanstalt
, v.
1890
, p.
129
131
.
Hoernes
,
R.
, and
Auinger
,
M.
,
1879–1891
,
Die Gastropoden der Meeresablagerungen der ersten und zweiten Miozänen Mediterranstufe in der österreichischen-ungarischen Monarchie
:
Abhandlungen der k.k.
geologischen Reichsanstalt
, v.
12
, p.
1
382
.
Hoppe
,
G.
,
1982
,
E.F.F. Chladni—Über den kosmischen Ursprung der Meteorite und Feuerkugeln (1794)
, in
Goetz
,
D.
, ed.,
Ostwalds Klassiker der exakten Wissenschaften (zweite Auflage)
:
Leipzig, Akademische Verlagsgesellschaft Geest & Portig K.-G.
,
104
p.
Hörnes
,
M.
,
1851
, 1856,
Die fossilen Mollusken des Tertiär-Beckens von Wien. I. Band
.
Univalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
3
, p.
1
736
.
Hörnes
,
M.
,
1853
,
Mittheilungen an Professor Bronn gerichtet: Neues Jahrbuch für Mineralogie
,
Geologie
:
Geognosie und Petrefakten-Kunde
, v.
1853
, p.
806
810
.
Hörnes
,
M.
,
1859
, 1867,
Die fossilen Mollusken des Tertiär-Beckens von Wien. II. Band
.
Bivalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
4
, p.
1
430
.
Kieslinger
,
A.
,
1972
,
Die Wiener Ringstraße—Bild einer Epoche: Die Erweiterung der Inneren Stadt Wien unter Kaiser Franz Joseph: Band IV
:
Die Steine der Wiener Ringstraße
:
Wiesbaden, Steiner
,
665
p.
Küchelbecker
,
J.B.
,
1730
,
Johann Basilii Kuchelbeckers allerneueste Nachricht vom Römisch-Käyserlichen Hofe
:
Nebst einer ausführlichen historischen Beschreibung der kayserlichen Residentz-Stadt Wien, und der umliegenden Oerter, theils aus den Geschichten, theils aus eigener Erfahrung zusammen getragen und mit saubern Kupffern ans Licht gegeben
 :
Hanover
,
Förster
,
884
p.
Lhotsky
A.
,
1941–1945
,
Festschrift des Kunsthistorischen Museums. Zur Feier des fünfzigjährigen Bestandes 2
.
Teil: Die Geschichte der Sammlungen, Horn
 ,
Austria
,
Verlag Ferdinand Berger
,
412
p.
Lualdi
A.
,
1996
,
Francois de Baillou, un ottico della Milano Teresiana
:
Nuncius Annali di Soria della Scienza XI, fasc. 2
 ,
Firenze
, p.
613
630
.
Lyell
,
C.
,
1830–1833
,
Principles of Geology: Being an attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation
:
London
,
John Murray
, v.
1
(
1830
),
511
p., v. 2 (1832), 398 +
109
p., v. 3 (1833),
330
p.
Mambriani
,
C.
,
1994
,
La Versaglia dei duchi di Parma: Prototipi e metamorfosi die giardini di Colorno
:
I giardini del “Principe” IV Convegno Internazionale
 .
Parchi e giardini storici, parchi letterari
,
Roma
, p.
149
158
.
Marvin
,
U.
,
2006
,
Meteorites in history: An overview from the Renaissance to the 20th century
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
15
71
.
Moser
,
J.
,
1808
,
Darstellung der physisch-chemischen Eigenschaften der, welche am 22
.
Mai 1808 bei und in Stannern in Mähren aus der Luft gefallen sind: Annalen der Physik
 , v.
29
, p.
309
327
, doi:10.1002/andp.18080290705.
Neubauer
,
T.A.
,
Harzhauser
,
M.
, and
Kroh
,
A.
,
2013
,
Phenotypic evolution in a fossil gastropod species lineage: Evidence for adaptive radiation?: Palaeogeography
,
Palaeoclimatology, Palaeoecology
 , v.
370
, p.
117
126
, doi:10.1016/j.palaeo.2012.11.025.
Neumayr
,
M.
, and
Paul
,
C.M.
,
1875
,
Die Congerien- und Paludienschichten Slavoniens und deren Faunen: Abhandlungen der k.k
.:
Geologischen Reichsanstalt
, v.
7
, p.
1
106
.
Niedermayer
,
G.
,
1984
,
Der Blumenstrauß aus Stein
:
Magma
, v.
2
, p.
82
83
.
Paneth
,
F.A.
,
1960
,
The discovery and earliest reproductions of the Widmanstätten figures: Geochimica et Cosmochimica Acta
, v.
18
, p.
176
180
, https://doi.org/10.1016/0016-7037(
60
)
90085
5
.
Pärr
,
N.
,
2013
,
Maximilian Hell und sein wissenschaftliches Umfeld in Wien des 18
.
Jahrhunderts
:
Religionsgeschichte der Frühen Neuzeit
, v.
14
,
333
p.
Partsch
,
P.
,
1843
,
Die Meteoriten oder vom Himmel gefallenen Steine und Eisenmassen im k.k. Hof-Mineralienkabinette zu Wien
:
Wien
,
Kaulfuss Witwe, Prandel & Company
,
162
p.
Prévost
,
C.
,
1820
,
Essai sur la constitution physique et geognostique du bassin a l’ouverture duquel est situee la ville de Vienne en Autriche
:
Journal de Physique, Chimie, d’Histoire naturelle et sur les Arts et Métiers
 , v.
92
, p.
428
434
.
Riedl-Dorn
,
C.
,
1998
,
Das Haus der Wunder
.
Zur Geschichte des Naturhistorischen Museums in Wien
:
Vienna, Holzhausen
,
308
p.
Riedl-Dorn
,
C.
,
2000
,
Chevalier de Baillou und das Naturalienkabinett
, in
Zedinger
,
R.
, ed.,
Lothringens Erbe
,
St. Pölten, self-published
, p.
111
123
.
Riedl-Dorn
,
C.
,
2001
,
Franz Stephan als Förderer naturwissenschaftlicher Aktivitäten
, in
Kowalská
,
E.
, and
Celková
,
M.
, eds.,
Zlatá a strieborná cesta cisára Frantiska Stefana Lotrinského po stredoslovenských banských mestách
 :
Slovakia
,
Banská Stiavnica
, p.
29
39
.
Sacco
,
F.
,
1894
,
I molluschi dei terreni terziarii del Piemonte e della Liguria
.
Parte 16: Fam. Cancellariidae H. e A. Adams 1853
 :
Bollettino dei Musei di Zoologia ed Anatomia comparata della Reale Universita di Torino
, v.
9
, no.
171
, p.
68
70
.
Saint-Laurent
,
J.
,
1746
,
Déscriptions abregée du fameux cabinet des M. le Chevalier de Baillou pour servir à l’histoire naturelle des pierres précieuses, métaux, minéraux et autres fossils
:
Luques [Lucca, Tuscany]
,
Sauveur & Jean-Dominique Marescandoli
,
156
p.
Scholler
,
H.
,
1953
,
Carl Franz Anton Ritter von Schreibers
.
Zur 100
 .
Wiederkehr seines Todestages
:
Annalen des Naturhistorischen Museums in Wien
, v.
59
, p.
23
48
.
Schönburg-Hartenstein
,
J.
,
1987
,
Josef Anton Nagel—ein Direktor des physikalischen Kabinettes
:
Vienna
,
Verlag der österreichischen Akademie der Wissenschaften
,
113
p.
Schreibers
,
C.
,
1819
,
Anhang-Verzeichnis der Sammlung von Meteor=Massen, welche sich im k.k. Hof-Mineralien-Cabinette in Wien befindet
, in
Chladni
,
E.F.F.
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
 :
Wien
,
Heubner
, p.
425
434
.
Schreibers
,
C.
,
1820
,
Beytrage zur Geschichte und Kenntnis meteorischer Stein-und Metall-Massen, und der Erscheinungen, welche deren Niederfallen zu begleiten pf1egen
:
Wien
,
Heubner
,
97
p.
Schreibers
,
K. v.
,
1808
,
Nachrichten von dem Steinregen, der sich am 22sten Mai 1808 in und um Stannern in Mähren ereignet hat
:
Annalen der Physik
, v.
29
, p.
225
250
, doi:10.1002/andp.18080290702.
Schreibers
,
K. v.
,
1809
,
Beschreibung der mährischen Meteorsteine nach ihrem Aeußern, vorzüglich der Rinde, und nach ihrer Masse, und einige Folgerungen, auf welche diese Beschreibung führt
:
Annalen der Physik
, v.
31
, p.
23
77
, doi:10.1002/andp.18090310103.
Stur
,
D.
,
1870
,
Beiträge zur Kenntniss der stratigraphischen Verhältnisse der marinen Stufe des Wiener Beckens: Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
20
, p.
303
342
.
Stütz
,
A.
,
1790
,
Ueber einige vorgeblich vom Himmel gefallene Steine
, in
Born
,
I.
, and
Trebra
,
F.W.H.
, eds.,
Bergbaukunde, zweyter Band
:
Leipzig, Georg Joachim Goeschen
, p.
398
409
.
Stütz
,
A.
,
1807
,
Mineralogisches Taschenbuch enthaltend eine Oryctographie von Unterösterreich; zum Gebrauche reisender Mineralogen
:
Wien and Triest
,
Geistinger’s Buchhandlung
,
394
p.
Troili
,
D.
,
1766
,
Della Caduta di un Sasso dall’Aria
,
Ragionamento
:
Modena
,
120
p.
Tromballa
,
T.
,
1953
,
Franz Stephan und sein Kreis: Beiträge zur Kulturgeschichte des Hauses Habsburg-Lothringen [Ph.D. thesis]
:
Vienna
,
University of Vienna
,
288
p.
Vauquelin
,
L.N.
,
1809
,
De la aerolite tombée à Stannern en Moravie, le 22 Mai 1808
:
Annales de Chimie et de Physique
 , v.
70
, p.
321
330
.
Wandruszka
,
A.
,
1962
,
Die Habsburg-Lothringer und die Naturwissenschaften, Mitteilungen des Instituts für Österreichische Geschichtsforschung 70
:
Vienna
,
Böhlau Verlag
, p.
355
364
.
Zedinger
,
R.
,
2009
,
“Kaiserliche Wunschliste”: Die Instruktion für Nikolaus Joseph Jacquin
, in
Zedinger
,
R.
, and
Schmale
,
W.
, eds.,
Franz Stephan von Lothringen und sein Kreis/L’empereur François Ier et le réseau lorrain/L’imperatore Francesco I e il circolo lorenese
 :
Das Achtzehnte Jahrhundert und Österreich Band
23
, p.
293
300
.
Zuschin
,
M.
,
Harzhauser
,
M.
,
Hengst
,
B.
,
Mandic
,
O.
, and
Roetzel
,
R.
,
2013
,
Long-term ecosystem stability in an Early Miocene estuary
:
Geology
 , v.
42
, p.
7
10
, https://doi.org/10.1130/G34761.1.

REFERENCES CITED

Bauer
,
A.
,
1883
,
Chemie und Alchemy in Österreich bis zum beginnenden XIX
:
Jahrhundert
:
Vienna, R. Lechner
,
85
p.
Bergmann
,
J.
,
1856
,
Pflege der Numismatik in Oesterreich im XVIII, und XIX
:
Wien, Jahrhundert mit besonderem Hinblick auf das k. k. Münz- und Medaillencabinet
in
Wien
,
80
p.
Berwerth
,
F.
,
1918
,
Die Meteoritensammlung des Naturhistorischen Hofmuseums als Born der Meteoritenkunde: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, phil.-hist
.
Classe
 , v.
19
, p.
31
108
.
Blöchinger von Bannholz
,
C.F.
,
1864
,
Der Oberstlieutenant Chevalier de Baillou und die Entstehung des k.k
:
Hof-Naturalien-Cabinets zu Wien
:
Vienna, Österreichische Militärzeitschrift
, v.
3
, p.
273
284
.
Blöchlinger
von Bannholz
,
C.F.
,
1868
,
Chevalier Jean de Baillou, erster Director des k. k. Hof-Naturalien-Cabinets in Wien und Oberstlieutenant in der Artillerie
.
Ein Beitrag zur Geschichte der Gelehrten, der Kunst und der Erfindungen
 :
Wien
,
E. Schlieper
,
52
p.
Born
,
I.
,
1780
,
Musaei Caesarei Vindobonensis Testacea, quae jussu Mariae Theresiae disposiuit
:
Vienna
,
Gerold
,
442
p., doi:10.5962/bhl.title.119974.
Brandstätter
,
F.
,
2006
,
History of the meteorite collection of the Natural History Museum of Vienna
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
123
133
.
Brezina
,
A.
,
1885
,
Die Meteoritensammlung des Kaiserlichen königlichen mineralogischen Hofcabinetes in Wien am I. Mai 1885
:
Wien
,
Jahrbuch der Kaiserlichen königlichen geologischen Reichsanstalt
, v.
35
, p.
151
276
.
Burke
,
J.G.
,
1986
,
Cosmic Debris: Meteorites in History
:
Berkeley
,
University of California Press
,
445
p.
Chladni
,
E.F.F.
,
1794
,
Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen
:
Riga
,
Johann Friedrich Hartknoch
,
63
p.
Chladni
,
E.F.F.
,
1819
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
:
Wien, J.G. Heubner
,
434
p.
Cohen
,
K.M.
,
Finney
,
S.C.
,
Gibbard
,
P.L.
, and
Fan
,
J.-X.
,
2013
,
The ICS International Chronostratigraphic Chart: Episodes
, v.
36
, p.
199
204
.
Darwin
,
F.
,
1887
,
Charles Darwin: Life and Letters
 :
London
,
John Murray
, v.
2
,
398
p.
Dobzhansky
,
T.
,
1973
,
Nothing in biology makes sense except in the light of evolution: The American Biology Teacher
, v.
35
, p.
125
129
, doi:10.2307/4444260.
Fitzinger
,
L.J.
,
1856
,
Geschichte des kaiserlich-königlichen Hof-Naturalien-Cabinetes zu Wien 1. Abteilung
:
Älteste Periode bis zum Tode Kaiser Leopold II. 1792
 :
Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserl
:
Akademie der Wissenschaften
, v.
21
, p.
433
479
.
Fitzinger
,
L.J.
,
1868a
,
Geschichte des kais. kön. Hof-Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVII
, p.
1013
1092
.
Fitzinger
,
L.J.
,
1868b
,
Geschichte des kais. kön. Hof- Naturalien-Cabinetes zu Wien
:
Wien
,
Sitzungsberichte der mathematisch naturwissenschaftlichen Klasse der kaiserlichen Akademie der Wissenschaften
, v.
LVIII
, p.
35
120
.
Fleischer
,
K.
1932
,
Das kunstgeschichtliche Material der geheimen Kammerzahlamtsbücher in den staatlichen Archiven Wiens von 1705 bis 1790
:
Quellenschriften zur barocken Kunst in Österreich und Ungarn
 :
Wien
,
Krystall-Verlag
, v.
1
.
Fuchs
,
T.
,
1872
,
Ueber den sogenannten “chaotischen Polymorphismus” und einige fossile Melanopsis-Arten
:
Verhandlungen d. k. k. zoolog.-botanischen Gesellschaft
 , v.
22
, p.
3
6
.
Garms-Cornides
,
E.
,
1999
,
Funktionäre und Karrieren in Italien Karls VI
, in
Mazohl-Wallnig
B.
, ed.,
Italienisches Österreich?
 :
Vienna
,
Interkulturelle Gemeinsamkeiten und nationale Differenzen vom 18. Jahrhundert bis zum Ende des Ersten Weltkrieges
, p.
207
225
.
Gradstein
,
F.M.
,
Ogg
,
J.G.
,
Schmitz
,
M.D.
, and
Ogg
,
G.M.
, eds.,
2012
,
The Geological Time Scale 2012
:
Amsterdam
,
Elsevier
,
2
vols.,
1144
p.
Grauer
,
K.J.
,
1932
,
Franz I. Stephan von Lothringen-Toskana, römisch-deutscher Kaiser
.
Sein Leben dargestellt bis zu seiner Kaiserwahl [Ph.D. thesis]
 :
Vienna
,
University of Vienna
, 97 p.
Güssmann
,
F.
,
1785
,
Lithophylacium Mitisianum—Dissertatione Praenia et Observationibus Perpetuis Physico Mineralogicis Explicatum
:
Viennae
,
Josephi Nobilis de Kurzbeck
,
632
p.
Güssmann
,
F.
,
1803
,
Über die Steinregen an den jungen Grafen Eugen Wrbna
:
Wien
,
Johann Thomas Edlen von Trattern
,
50
p.
Haidinger
,
K.
,
1782
,
Eintheilung der kaiserl. königl. Naturaliensammlung zu Wien
:
Vienna
,
Friedrich Christian Wappler
,
104
p.
Hamann
,
G.
,
1976
,
Das Naturhistorische Museum in Wien
.
Die Geschichte der Wiener naturhistorischen Sammlungen bis zum Ende der Monarchie
 :
Wien
,
Veröffentlichungen aus dem Naturhistorischen Museum, Neue Folge
13
,
98
p.
Harzhauser
,
M.
, and
Landau
,
B.
,
2012
,
A revision of the Neogene Cancellariid Gastropods of the Paratethys Sea
:
Zootaxa
, v.
3472
, p.
1
72
.
Harzhauser
,
M.
, and
Landau
,
B.M.
,
2016
,
A revision of the Neogene Conidae and Conorbidae (Gastropoda) of the Paratethys Sea
:
Zootaxa
, v.
4210
, p.
1
178
, doi:10.11646/zootaxa.4210.1.1.
Harzhauser
,
M.
, and
Piller
,
W.E.
,
2007
,
Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the central Paratethys during the Miocene
:
Palaeogeography, Palaeoclimatology, Palaeoecology
 , v.
253
, p.
8
31
, doi:10.1016/j.palaeo.2007.03.031.
Hassmann
,
E.
,
2015
,
Quellen und Regesten zur Schatzkammer, Gemäldegalerie und zu den drei Kabinetten aus dem Archivbestand des k.k. Oberstkämmereramtes 1777 bis 1787 mit einem Nachtrag zu den Jahren 1748 bis 1776
:
Wien
,
Jahrbuch des Kunsthistorischen Museums Wien
, v.
15–16
,
403
p.
Hazen
,
R.M.
,
Papineau
,
D.
,
Bleeker
,
W.
,
Downs
,
R.T.
,
Ferry
,
J.M.
,
McCoy
,
T.J.
,
Sverjensky
,
D.A.
, and
Yang
,
H.
,
2008
,
Mineral evolution: The American Mineralogist
, v.
93
, p.
1693
1720
, doi:10.2138/am.2008.2955.
Hochstetter
,
F.
,
1884
,
Die Geschichte des Hof-Mineraliencabinets und seiner Sammlungen
.
Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
34
, p.
263
298
.
Hoernes
,
R.
,
1890
,
Versteinerungen aus dem miocänen Tegel von Walbersdorf: Verhandlungen der k.k
:
Geologischen Reichsanstalt
, v.
1890
, p.
129
131
.
Hoernes
,
R.
, and
Auinger
,
M.
,
1879–1891
,
Die Gastropoden der Meeresablagerungen der ersten und zweiten Miozänen Mediterranstufe in der österreichischen-ungarischen Monarchie
:
Abhandlungen der k.k.
geologischen Reichsanstalt
, v.
12
, p.
1
382
.
Hoppe
,
G.
,
1982
,
E.F.F. Chladni—Über den kosmischen Ursprung der Meteorite und Feuerkugeln (1794)
, in
Goetz
,
D.
, ed.,
Ostwalds Klassiker der exakten Wissenschaften (zweite Auflage)
:
Leipzig, Akademische Verlagsgesellschaft Geest & Portig K.-G.
,
104
p.
Hörnes
,
M.
,
1851
, 1856,
Die fossilen Mollusken des Tertiär-Beckens von Wien. I. Band
.
Univalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
3
, p.
1
736
.
Hörnes
,
M.
,
1853
,
Mittheilungen an Professor Bronn gerichtet: Neues Jahrbuch für Mineralogie
,
Geologie
:
Geognosie und Petrefakten-Kunde
, v.
1853
, p.
806
810
.
Hörnes
,
M.
,
1859
, 1867,
Die fossilen Mollusken des Tertiär-Beckens von Wien. II. Band
.
Bivalven
:
Abhandlungen der Geologischen Reichsanstalt
, v.
4
, p.
1
430
.
Kieslinger
,
A.
,
1972
,
Die Wiener Ringstraße—Bild einer Epoche: Die Erweiterung der Inneren Stadt Wien unter Kaiser Franz Joseph: Band IV
:
Die Steine der Wiener Ringstraße
:
Wiesbaden, Steiner
,
665
p.
Küchelbecker
,
J.B.
,
1730
,
Johann Basilii Kuchelbeckers allerneueste Nachricht vom Römisch-Käyserlichen Hofe
:
Nebst einer ausführlichen historischen Beschreibung der kayserlichen Residentz-Stadt Wien, und der umliegenden Oerter, theils aus den Geschichten, theils aus eigener Erfahrung zusammen getragen und mit saubern Kupffern ans Licht gegeben
 :
Hanover
,
Förster
,
884
p.
Lhotsky
A.
,
1941–1945
,
Festschrift des Kunsthistorischen Museums. Zur Feier des fünfzigjährigen Bestandes 2
.
Teil: Die Geschichte der Sammlungen, Horn
 ,
Austria
,
Verlag Ferdinand Berger
,
412
p.
Lualdi
A.
,
1996
,
Francois de Baillou, un ottico della Milano Teresiana
:
Nuncius Annali di Soria della Scienza XI, fasc. 2
 ,
Firenze
, p.
613
630
.
Lyell
,
C.
,
1830–1833
,
Principles of Geology: Being an attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation
:
London
,
John Murray
, v.
1
(
1830
),
511
p., v. 2 (1832), 398 +
109
p., v. 3 (1833),
330
p.
Mambriani
,
C.
,
1994
,
La Versaglia dei duchi di Parma: Prototipi e metamorfosi die giardini di Colorno
:
I giardini del “Principe” IV Convegno Internazionale
 .
Parchi e giardini storici, parchi letterari
,
Roma
, p.
149
158
.
Marvin
,
U.
,
2006
,
Meteorites in history: An overview from the Renaissance to the 20th century
, in
McCall
,
G.J.H.
,
Bowden
,
A.J.
, and
Howarth
,
R.J.
, eds.,
The History of Meteoritics and Key Meteorite Collections: Fireballs, Falls and Finds
 :
Geological Society
,
London
, Special Publication 256, p.
15
71
.
Moser
,
J.
,
1808
,
Darstellung der physisch-chemischen Eigenschaften der, welche am 22
.
Mai 1808 bei und in Stannern in Mähren aus der Luft gefallen sind: Annalen der Physik
 , v.
29
, p.
309
327
, doi:10.1002/andp.18080290705.
Neubauer
,
T.A.
,
Harzhauser
,
M.
, and
Kroh
,
A.
,
2013
,
Phenotypic evolution in a fossil gastropod species lineage: Evidence for adaptive radiation?: Palaeogeography
,
Palaeoclimatology, Palaeoecology
 , v.
370
, p.
117
126
, doi:10.1016/j.palaeo.2012.11.025.
Neumayr
,
M.
, and
Paul
,
C.M.
,
1875
,
Die Congerien- und Paludienschichten Slavoniens und deren Faunen: Abhandlungen der k.k
.:
Geologischen Reichsanstalt
, v.
7
, p.
1
106
.
Niedermayer
,
G.
,
1984
,
Der Blumenstrauß aus Stein
:
Magma
, v.
2
, p.
82
83
.
Paneth
,
F.A.
,
1960
,
The discovery and earliest reproductions of the Widmanstätten figures: Geochimica et Cosmochimica Acta
, v.
18
, p.
176
180
, https://doi.org/10.1016/0016-7037(
60
)
90085
5
.
Pärr
,
N.
,
2013
,
Maximilian Hell und sein wissenschaftliches Umfeld in Wien des 18
.
Jahrhunderts
:
Religionsgeschichte der Frühen Neuzeit
, v.
14
,
333
p.
Partsch
,
P.
,
1843
,
Die Meteoriten oder vom Himmel gefallenen Steine und Eisenmassen im k.k. Hof-Mineralienkabinette zu Wien
:
Wien
,
Kaulfuss Witwe, Prandel & Company
,
162
p.
Prévost
,
C.
,
1820
,
Essai sur la constitution physique et geognostique du bassin a l’ouverture duquel est situee la ville de Vienne en Autriche
:
Journal de Physique, Chimie, d’Histoire naturelle et sur les Arts et Métiers
 , v.
92
, p.
428
434
.
Riedl-Dorn
,
C.
,
1998
,
Das Haus der Wunder
.
Zur Geschichte des Naturhistorischen Museums in Wien
:
Vienna, Holzhausen
,
308
p.
Riedl-Dorn
,
C.
,
2000
,
Chevalier de Baillou und das Naturalienkabinett
, in
Zedinger
,
R.
, ed.,
Lothringens Erbe
,
St. Pölten, self-published
, p.
111
123
.
Riedl-Dorn
,
C.
,
2001
,
Franz Stephan als Förderer naturwissenschaftlicher Aktivitäten
, in
Kowalská
,
E.
, and
Celková
,
M.
, eds.,
Zlatá a strieborná cesta cisára Frantiska Stefana Lotrinského po stredoslovenských banských mestách
 :
Slovakia
,
Banská Stiavnica
, p.
29
39
.
Sacco
,
F.
,
1894
,
I molluschi dei terreni terziarii del Piemonte e della Liguria
.
Parte 16: Fam. Cancellariidae H. e A. Adams 1853
 :
Bollettino dei Musei di Zoologia ed Anatomia comparata della Reale Universita di Torino
, v.
9
, no.
171
, p.
68
70
.
Saint-Laurent
,
J.
,
1746
,
Déscriptions abregée du fameux cabinet des M. le Chevalier de Baillou pour servir à l’histoire naturelle des pierres précieuses, métaux, minéraux et autres fossils
:
Luques [Lucca, Tuscany]
,
Sauveur & Jean-Dominique Marescandoli
,
156
p.
Scholler
,
H.
,
1953
,
Carl Franz Anton Ritter von Schreibers
.
Zur 100
 .
Wiederkehr seines Todestages
:
Annalen des Naturhistorischen Museums in Wien
, v.
59
, p.
23
48
.
Schönburg-Hartenstein
,
J.
,
1987
,
Josef Anton Nagel—ein Direktor des physikalischen Kabinettes
:
Vienna
,
Verlag der österreichischen Akademie der Wissenschaften
,
113
p.
Schreibers
,
C.
,
1819
,
Anhang-Verzeichnis der Sammlung von Meteor=Massen, welche sich im k.k. Hof-Mineralien-Cabinette in Wien befindet
, in
Chladni
,
E.F.F.
,
Über Feuer-Meteore und über die mit denselben herabgefallenen Massen
 :
Wien
,
Heubner
, p.
425
434
.
Schreibers
,
C.
,
1820
,
Beytrage zur Geschichte und Kenntnis meteorischer Stein-und Metall-Massen, und der Erscheinungen, welche deren Niederfallen zu begleiten pf1egen
:
Wien
,
Heubner
,
97
p.
Schreibers
,
K. v.
,
1808
,
Nachrichten von dem Steinregen, der sich am 22sten Mai 1808 in und um Stannern in Mähren ereignet hat
:
Annalen der Physik
, v.
29
, p.
225
250
, doi:10.1002/andp.18080290702.
Schreibers
,
K. v.
,
1809
,
Beschreibung der mährischen Meteorsteine nach ihrem Aeußern, vorzüglich der Rinde, und nach ihrer Masse, und einige Folgerungen, auf welche diese Beschreibung führt
:
Annalen der Physik
, v.
31
, p.
23
77
, doi:10.1002/andp.18090310103.
Stur
,
D.
,
1870
,
Beiträge zur Kenntniss der stratigraphischen Verhältnisse der marinen Stufe des Wiener Beckens: Jahrbuch der k.k
:
Geologischen Reichsanstalt
, v.
20
, p.
303
342
.
Stütz
,
A.
,
1790
,
Ueber einige vorgeblich vom Himmel gefallene Steine
, in
Born
,
I.
, and
Trebra
,
F.W.H.
, eds.,
Bergbaukunde, zweyter Band
:
Leipzig, Georg Joachim Goeschen
, p.
398
409
.
Stütz
,
A.
,
1807
,
Mineralogisches Taschenbuch enthaltend eine Oryctographie von Unterösterreich; zum Gebrauche reisender Mineralogen
:
Wien and Triest
,
Geistinger’s Buchhandlung
,
394
p.
Troili
,
D.
,
1766
,
Della Caduta di un Sasso dall’Aria
,
Ragionamento
:
Modena
,
120
p.
Tromballa
,
T.
,
1953
,
Franz Stephan und sein Kreis: Beiträge zur Kulturgeschichte des Hauses Habsburg-Lothringen [Ph.D. thesis]
:
Vienna
,
University of Vienna
,
288
p.
Vauquelin
,
L.N.
,
1809
,
De la aerolite tombée à Stannern en Moravie, le 22 Mai 1808
:
Annales de Chimie et de Physique
 , v.
70
, p.
321
330
.
Wandruszka
,
A.
,
1962
,
Die Habsburg-Lothringer und die Naturwissenschaften, Mitteilungen des Instituts für Österreichische Geschichtsforschung 70
:
Vienna
,
Böhlau Verlag
, p.
355
364
.
Zedinger
,
R.
,
2009
,
“Kaiserliche Wunschliste”: Die Instruktion für Nikolaus Joseph Jacquin
, in
Zedinger
,
R.
, and
Schmale
,
W.
, eds.,
Franz Stephan von Lothringen und sein Kreis/L’empereur François Ier et le réseau lorrain/L’imperatore Francesco I e il circolo lorenese
 :
Das Achtzehnte Jahrhundert und Österreich Band
23
, p.
293
300
.
Zuschin
,
M.
,
Harzhauser
,
M.
,
Hengst
,
B.
,
Mandic
,
O.
, and
Roetzel
,
R.
,
2013
,
Long-term ecosystem stability in an Early Miocene estuary
:
Geology
 , v.
42
, p.
7
10
, https://doi.org/10.1130/G34761.1.

Figures & Tables

Figure 1.

The Natural History Museum Vienna today with the monument of Maria Theresia.

Figure 1.

The Natural History Museum Vienna today with the monument of Maria Theresia.

Figure 2.

Painting by Franz Messmer and Jakob Kohl of Franz I. Stephan with the directors of his collections and the court physician; the painting is called the Kaiserbild and was created in 1773. Standing at the center of the painting is the director of the “Cabinet des Medailles et des Monnaies” (Cabinet of Medals and Coins), Valentin Jamery Duval; to the left of Duval is the director of the “Cabinet des Curiosités Naturelles” (Cabinet of Natural Curiosities), Jean de Baillou. The director of the “Cabinet des Machines” (Physical and Astronomy Cabinet), Abbé Jean François de Marcy (1707–1791), is positioned in the lower right corner; and the court physician and prefect of the imperial library, Gérard van Swieten (1700–1772), is standing at the lower left side behind the Emperor, who is sitting in a chair.

Figure 2.

Painting by Franz Messmer and Jakob Kohl of Franz I. Stephan with the directors of his collections and the court physician; the painting is called the Kaiserbild and was created in 1773. Standing at the center of the painting is the director of the “Cabinet des Medailles et des Monnaies” (Cabinet of Medals and Coins), Valentin Jamery Duval; to the left of Duval is the director of the “Cabinet des Curiosités Naturelles” (Cabinet of Natural Curiosities), Jean de Baillou. The director of the “Cabinet des Machines” (Physical and Astronomy Cabinet), Abbé Jean François de Marcy (1707–1791), is positioned in the lower right corner; and the court physician and prefect of the imperial library, Gérard van Swieten (1700–1772), is standing at the lower left side behind the Emperor, who is sitting in a chair.

Figure 3.

A. Obsieger’s copy of the Kaiserbild, 42.7 × 50.5 cm, pencil drawing, 1859; the drawing shows the Kaiserbild without the quartz crystal at the feet of Abbé Marcy.

Figure 3.

A. Obsieger’s copy of the Kaiserbild, 42.7 × 50.5 cm, pencil drawing, 1859; the drawing shows the Kaiserbild without the quartz crystal at the feet of Abbé Marcy.

Figure 4.

Photograph of the Kaiserbild, 1905. This historic photograph of the Kaiserbild shows the painting without the quartz crystal at the feet of Abbé Marcy.

Figure 4.

Photograph of the Kaiserbild, 1905. This historic photograph of the Kaiserbild shows the painting without the quartz crystal at the feet of Abbé Marcy.

Figure 5.

Detail of an X-ray image of the Kaiserbild. The X-ray was made in the course of restoration work done to the Kaiserbild in 1992 and shows a painted-over person who was later identified as Maximilian Hell.

Figure 5.

Detail of an X-ray image of the Kaiserbild. The X-ray was made in the course of restoration work done to the Kaiserbild in 1992 and shows a painted-over person who was later identified as Maximilian Hell.

Figure 6.

Photograph of the Kaiserbild with delineated contours of the painted-over persons who were discovered in the course of restoration work done to the painting in 1992.

Figure 6.

Photograph of the Kaiserbild with delineated contours of the painted-over persons who were discovered in the course of restoration work done to the painting in 1992.

Figure 7.

Johannes Esaias Nilson (1721–1788), Portrait of Maximilian Hell, engraving, ca. 1770.

Figure 7.

Johannes Esaias Nilson (1721–1788), Portrait of Maximilian Hell, engraving, ca. 1770.

Figure 8.

Ammonite coroniceras rotiforme from the Ambrasian Collection.

Figure 8.

Ammonite coroniceras rotiforme from the Ambrasian Collection.

Figure 9.

Gemstone bouquet of Maria Theresia. The gemstone bouquet was a gift from Maria Theresia to her husband, Franz I. Stephan, and consists of 2102 diamonds and 761 colored stones; the leaves were made of silk. The bouquet is now part of the mineralogical collections of the museum.

Figure 9.

Gemstone bouquet of Maria Theresia. The gemstone bouquet was a gift from Maria Theresia to her husband, Franz I. Stephan, and consists of 2102 diamonds and 761 colored stones; the leaves were made of silk. The bouquet is now part of the mineralogical collections of the museum.

Figure 10.

View of the meteorite collection in Hall 5 of the Natural History Museum, Vienna. Approximately 1100 meteorite specimens from 650 localities are on display. In 2012, the meteorite hall was completely renovated and modernized. The cabinets in the middle of the hall contain the systematic collection, and they are surrounded by thematic stations along the walls.

Figure 10.

View of the meteorite collection in Hall 5 of the Natural History Museum, Vienna. Approximately 1100 meteorite specimens from 650 localities are on display. In 2012, the meteorite hall was completely renovated and modernized. The cabinets in the middle of the hall contain the systematic collection, and they are surrounded by thematic stations along the walls.

Figure 11.

The meteorite Hraschina; main piece of the fall of 1751 near Zagreb, Croatia. In 1778, the 39 kg iron mass was transferred from the Imperial Treasury to the Natural History Cabinet and became the founding object of the Vienna meteorite collection. Inventory no. A2.

Figure 11.

The meteorite Hraschina; main piece of the fall of 1751 near Zagreb, Croatia. In 1778, the 39 kg iron mass was transferred from the Imperial Treasury to the Natural History Cabinet and became the founding object of the Vienna meteorite collection. Inventory no. A2.

Figure 12.

“Catalogus Stützianus,” the seven-volume catalogue of the natural history collection, produced by Abott Andreas Xavier Stütz (1747–1806). In 1806, the handwritten catalogue contained the entries for seven different meteorites.

Figure 12.

“Catalogus Stützianus,” the seven-volume catalogue of the natural history collection, produced by Abott Andreas Xavier Stütz (1747–1806). In 1806, the handwritten catalogue contained the entries for seven different meteorites.

Figure 13.

The largest still-existing fragment of the stone that fell in 1785 at Eichstädt, Bavaria. As one of the earliest meteorite acquisitions, the 122 g specimen is listed in the “Catalogus Stützianus” (1806) and depicted in the book by Schreibers (1820; see also Fig. 20). Inventory no. A14.

Figure 13.

The largest still-existing fragment of the stone that fell in 1785 at Eichstädt, Bavaria. As one of the earliest meteorite acquisitions, the 122 g specimen is listed in the “Catalogus Stützianus” (1806) and depicted in the book by Schreibers (1820; see also Fig. 20). Inventory no. A14.

Figure 14.

The Tabor stony meteorite. Largest single stone (weighing 2.8 kg) from the meteorite shower that occurred in 1753 in Bohemia, Czech Republic. In 1778, it was transferred together with the Hraschina iron from the Imperial Treasury to the Natural History Cabinet. It is listed in the “Catalogus Stützianus” (1806) and depicted in the book of Schreibers (1820; see also Fig. 20). Inventory no. A10.

Figure 14.

The Tabor stony meteorite. Largest single stone (weighing 2.8 kg) from the meteorite shower that occurred in 1753 in Bohemia, Czech Republic. In 1778, it was transferred together with the Hraschina iron from the Imperial Treasury to the Natural History Cabinet. It is listed in the “Catalogus Stützianus” (1806) and depicted in the book of Schreibers (1820; see also Fig. 20). Inventory no. A10.

Figure 15.

Carl von Schreibers (1775–1852), director of the United Imperial and Royal Natural History Cabinet from 1806 to 1851. He is regarded as the founder of meteoritic science in Vienna. For the first time, Schreibers also arranged a separate display room devoted to meteorites.

Figure 15.

Carl von Schreibers (1775–1852), director of the United Imperial and Royal Natural History Cabinet from 1806 to 1851. He is regarded as the founder of meteoritic science in Vienna. For the first time, Schreibers also arranged a separate display room devoted to meteorites.

Figure 16.

One of the largest stones of the Stannern meteorite shower, weighing ~2 kg. It was collected by Carl von Schreibers a few days after the fall event near Stonarov, Czech Republic, in 1808. The investigations of Schreibers (1808), Moser (1808), and Vauquelin (1809) revealed that Stannern was a new type of stony meteorite; later this meteorite type was named achondrites. Inventory no. A21.

Figure 16.

One of the largest stones of the Stannern meteorite shower, weighing ~2 kg. It was collected by Carl von Schreibers a few days after the fall event near Stonarov, Czech Republic, in 1808. The investigations of Schreibers (1808), Moser (1808), and Vauquelin (1809) revealed that Stannern was a new type of stony meteorite; later this meteorite type was named achondrites. Inventory no. A21.

Figure 17.

One of the original platelets of the Hraschina iron meteorite. In 1808, Alois Beck von Widmanstätten used these platelets for his flame-heating experiments. In the course of these experiments, he discovered the pattern that is characteristic for most iron meteorites and that ever since bears his name.

Figure 17.

One of the original platelets of the Hraschina iron meteorite. In 1808, Alois Beck von Widmanstätten used these platelets for his flame-heating experiments. In the course of these experiments, he discovered the pattern that is characteristic for most iron meteorites and that ever since bears his name.

Figure 18.

Plate VIII of Schreibers’ book from 1820, depicting a color print of the pallasite Krasnojarsk (Sibirien) (top); and early prints of the irons; Toluca (Mexico) (left); Lenarto (Lénarto) (bottom); and Hraschina (Agram) (right).

Figure 18.

Plate VIII of Schreibers’ book from 1820, depicting a color print of the pallasite Krasnojarsk (Sibirien) (top); and early prints of the irons; Toluca (Mexico) (left); Lenarto (Lénarto) (bottom); and Hraschina (Agram) (right).

Figure 19.

Title page of Schreibers’ book from 1820 entitled, Contributions to the History and Knowledge of Meteoritic Stone and Iron Masses and of the Phenomena That Usually Accompany Their Fall. The lower part of the title page depicts three polished and etched objects (one ring and two cubes) made from the Elbogen iron mass.

Figure 19.

Title page of Schreibers’ book from 1820 entitled, Contributions to the History and Knowledge of Meteoritic Stone and Iron Masses and of the Phenomena That Usually Accompany Their Fall. The lower part of the title page depicts three polished and etched objects (one ring and two cubes) made from the Elbogen iron mass.

Figure 20.

Plate II of Schreibers’ book from 1820, depicting specimens of the historical important stony meteorites: Tabor (top), Eichstädt (left), L’Aigle (bottom), and Siena (right).

Figure 20.

Plate II of Schreibers’ book from 1820, depicting specimens of the historical important stony meteorites: Tabor (top), Eichstädt (left), L’Aigle (bottom), and Siena (right).

Figure 21.

Title page (right) of Partsch’s 1843 publication, which appears to be the first printed meteorite catalogue of a museum collection. On the left, the etched surface of a plate of the Lenarto iron with a pronounced Widmanstätten pattern is depicted.

Figure 21.

Title page (right) of Partsch’s 1843 publication, which appears to be the first printed meteorite catalogue of a museum collection. On the left, the etched surface of a plate of the Lenarto iron with a pronounced Widmanstätten pattern is depicted.

Figure 22.

Collection drawer with hundreds of turrid gastropods (from the Vienna Basin), which were eponymous for the so-called Pleurotoma clays.

Figure 22.

Collection drawer with hundreds of turrid gastropods (from the Vienna Basin), which were eponymous for the so-called Pleurotoma clays.

Figure 23.

Facsimile of a plate depicting cancellariid gastropods from the comprehensive monograph on the Miocene mollusc fauna from the Vienna Basin by Hörnes (1851–1856) with a picture of the syntype of Trigonostoma exgeslini (Sacco, 1894). Half of the species on the plate were erroneously equated with Early Miocene or Pliocene species, thus blurring the stratigraphic significance of the Middle Miocene faunas (see Harzhauser and Landau, 2012, for a revision).

Figure 23.

Facsimile of a plate depicting cancellariid gastropods from the comprehensive monograph on the Miocene mollusc fauna from the Vienna Basin by Hörnes (1851–1856) with a picture of the syntype of Trigonostoma exgeslini (Sacco, 1894). Half of the species on the plate were erroneously equated with Early Miocene or Pliocene species, thus blurring the stratigraphic significance of the Middle Miocene faunas (see Harzhauser and Landau, 2012, for a revision).

Figure 24.

Melchior Neumayr (1845–1890) was one of the first Darwinists among the Austrian paleontologists. Image courtesy of Archive of the Geological Survey of Austria.

Figure 24.

Melchior Neumayr (1845–1890) was one of the first Darwinists among the Austrian paleontologists. Image courtesy of Archive of