USING ELEMENTAL CHEMOSTRATIGRAPHY ON MID-LATE FRASNIAN PLATFORM-TOP SUCCESSIONS FROM THE LENNARD SHELF OUTCROPS, CANNING BASIN, WESTERN AUSTRALIA
-
Published:January 01, 2017
-
CiteCitation
Kenneth Ratcliffe, Ted E. Playton, Paul Montgomery, David Wray, Samuel Caulfield-Kerney, Eric Tohver, Roger M. Hocking, Peter W. Haines, Joseph Kirschvink, Maodu Yan, 2017. "USING ELEMENTAL CHEMOSTRATIGRAPHY ON MID-LATE FRASNIAN PLATFORM-TOP SUCCESSIONS FROM THE LENNARD SHELF OUTCROPS, CANNING BASIN, WESTERN AUSTRALIA", NEWADVANCES IN DEVONIAN CARBONATES: OUTCROP ANALOGS, RESERVOIRS AND CHRONOSTRATIGRAPHY, Ted E. Playton, Charles Kerans, John A.W. Weissenberger
Download citation file:
- Share
-
Tools
Abstract:
High-resolution chronostratigraphic correlation using elemental chemostratigraphy in platform carbonates is typically difficult to achieve. Here, elemental chemostratigraphy is used to correlate between two platform-top, carbonate-dominated field sections from the narrow Lennard Shelf that existed on the NE margin of the Canning Basin, Western Australia, during the mid-late Frasnian. The correlation, constrained by magnetic polarity reversals and physical ground truthing, is based on recognition of distinctive cyclical “stacking patterns” defined by changes in concentrations of the trace element zirconium (Zr). Zr concentrations are controlled by the amount of the heavy mineral zircon in the sediments, which is derived from a...
Figures & Tables
Contents
NEWADVANCES IN DEVONIAN CARBONATES: OUTCROP ANALOGS, RESERVOIRS AND CHRONOSTRATIGRAPHY
The Devonian stratigraphic record contains a wealth of information that highlights the response of carbonate platforms to both global-scale and local phenomena that drive carbonate architecture and productivity. Signals embedded particularly in the Middle-Upper Devonian carbonate record related to biotic crises and stressed oceanic conditions, long-term accommodation trends, and peak greenhouse to transitional climatic changes are observed in multiple localities around the world and temporally constrained by biostratigraphy, highlighting distinct and impactful global controls. Devonian datasets also stress the importance of local or regional phenomena, such as bolide impacts, the effects of terrestrial input and paleogeography, syn-depositional tectonics, and high-frequency accommodation drivers, which add complexity to the carbonate stratigraphic record when superimposed on global trends. The unique occurrence of well-studied and pristinely preserved reefal carbonate outcrop and subsurface datasets, ranging across the globe from Australia to Canada, allows for a detailed examination of Devonian carbonate systems from a global perspective and the opportunity to develop well-constrained predictive relationships and conceptual models. Advances in the understanding of the Devonian carbonate system is advantageous considering, not only the classic conventional reservoirs such as the pinnacle reefs of the Alberta Basin, but also emerging conventional reservoirs in Eurasia, and many unconventional plays in North America. The papers in this volume provide updated stratigraphic frameworks for classic Devonian datasets using integrated correlation approaches; new or synthesized frameworks for less studied basins, reservoirs, or areas; and discussions on the complex interplay of extrinsic and intrinsic controls that drive carbonate architectures, productivity, and distribution. The 13 papers in this special publication include outcrop and subsurface studies of Middle to Upper Devonian carbonates of western Canada, the Lennard Shelf of the Canning Basin, Western Australia, and the western USA.