NEWADVANCES IN DEVONIAN CARBONATES: OUTCROP ANALOGS, RESERVOIRS AND CHRONOSTRATIGRAPHY
The Devonian stratigraphic record contains a wealth of information that highlights the response of carbonate platforms to both global-scale and local phenomena that drive carbonate architecture and productivity. Signals embedded particularly in the Middle-Upper Devonian carbonate record related to biotic crises and stressed oceanic conditions, long-term accommodation trends, and peak greenhouse to transitional climatic changes are observed in multiple localities around the world and temporally constrained by biostratigraphy, highlighting distinct and impactful global controls. Devonian datasets also stress the importance of local or regional phenomena, such as bolide impacts, the effects of terrestrial input and paleogeography, syn-depositional tectonics, and high-frequency accommodation drivers, which add complexity to the carbonate stratigraphic record when superimposed on global trends. The unique occurrence of well-studied and pristinely preserved reefal carbonate outcrop and subsurface datasets, ranging across the globe from Australia to Canada, allows for a detailed examination of Devonian carbonate systems from a global perspective and the opportunity to develop well-constrained predictive relationships and conceptual models. Advances in the understanding of the Devonian carbonate system is advantageous considering, not only the classic conventional reservoirs such as the pinnacle reefs of the Alberta Basin, but also emerging conventional reservoirs in Eurasia, and many unconventional plays in North America. The papers in this volume provide updated stratigraphic frameworks for classic Devonian datasets using integrated correlation approaches; new or synthesized frameworks for less studied basins, reservoirs, or areas; and discussions on the complex interplay of extrinsic and intrinsic controls that drive carbonate architectures, productivity, and distribution. The 13 papers in this special publication include outcrop and subsurface studies of Middle to Upper Devonian carbonates of western Canada, the Lennard Shelf of the Canning Basin, Western Australia, and the western USA.
IDAHO LOST RIVER SHELF TO MONTANA CRATON: NORTH AMERICAN LATE DEVONIAN STRATIGRAPHY, SURFACES, AND INTRASHELF BASIN
-
Published:January 01, 2017
-
CiteCitation
George W. Grader, Peter E. Isaacson, P. Ted Doughty, Michael C. Pope, Michael K. Desantis, 2017. "IDAHO LOST RIVER SHELF TO MONTANA CRATON: NORTH AMERICAN LATE DEVONIAN STRATIGRAPHY, SURFACES, AND INTRASHELF BASIN", NEWADVANCES IN DEVONIAN CARBONATES: OUTCROP ANALOGS, RESERVOIRS AND CHRONOSTRATIGRAPHY, Ted E. Playton, Charles Kerans, John A.W. Weissenberger
Download citation file:
- Share
ABSTRACT:
Understanding of very thick Late Devonian shelf strata in Idaho is hindered by formation terminologies. Interpreted genetically, and in combination with lower accommodation settings in Montana, strata reveal craton-to-basin geometries and analogues similar to other western Laurentian basins. The Jefferson Formation Birdbear Member and Three Forks Formation in Montana are correlated to the Jefferson Grandview Dolomite in Idaho using regional sequence stratigraphic surfaces. A new stratigraphic framework defines three widely deposited latest Frasnian sequences and Early Famennian intrashelf basin paleogeography.
Peritidal to marine mixed siliciclastic and carbonate rocks of the Middle Devonian lower Jefferson Formation in Idaho are overlain by the Frasnian Dark Dolomite. These rocks are overlain by similar lithologies, including thick evaporite solution breccias of the latest Frasnian and Early Famennian upper Jefferson Formation. Latest Frasnian sequences are similar to Nisku–Winterburn sequences in western Canada. Overlying Famennian successions are correlatives to the Three Forks Formation Logan Gulch Member in Montana and the Palliser–Wabamun units of Alberta.
Biohermal Dark Dolomite in the central Lemhi Range and Borah Peak area of the Lost River Range was deposited west of the Lemhi Arch, with buildups also established on ramps near the shelf break in the Grandview Canyon area (Grandview Reef). During onset of the Antler Orogeny, prior to deposition of the Middle Famennian Three Forks Trident Member and widespread disconformities, a latest Frasnian outer shelf barrier formed above the Grandview Reef. Cyclic, heterolithic, peloidal western Grandview Dolomite facies were deposited and are ~330 m thick, although correlative facies of the Jefferson D4 through D6 members are twice as thick behind the shelf edge in the central Lemhi and Borah Peak area. Lower Grandview Dolomite black subtidal carbonate and Nisku buildups (Gooseberry Reef) formed in three late Frasnian sequences and under a basal Famennian sequence boundary. At this time, the Lemhi Arch foundered, but remained unstable—it was termed the “Beaverhead Mountains uplift.” An intrashelf basin dominated midshelf paleogeography during the Early Famennian, accommodating thick shallow water barrier sandstone, solution-collapse breccia, and restricted marine dolostone and limestone of the upper Grandview Dolomite.
Crinoid packstone beds near the top of the Jefferson Formation occur below the Three Forks Trident Member in the Lost River Range. Similar nodular, crinoidal limestone with cephalopods occurs under an unconformity with the Sappington Formation in the Beaverhead Mountains. These rocks were previously called the False Birdbear and were grouped with the Jefferson Formation; however, they comprise their own ~15-m-thick sequence and are unrelated to the rarely fossiliferous and dolomitized upper Grandview Dolomite.
Open marine shale–limestone sequences of the 80-m-thick Trident Member were deposited on the Idaho shelf above and below regional surfaces and hiatuses. These rocks were variably accommodated on reactivated paleohighs and in local seaways on the craton margin. An unconformity developed on the outer Idaho shelf in the latest Devonian during deposition of the Sappington Formation on the Lemhi Arch and in the Central Montana Trough. Sappington strata were either not deposited on the western shelf or accumulated under deep water conditions and were eroded during regional Mississippian basin inversion and turbidite deposition.
- basins
- biogenic structures
- bioherms
- Borah Peak
- carbonate rocks
- Carboniferous
- clastic rocks
- cratons
- Crinoidea
- Crinozoa
- Custer County Idaho
- cyclic processes
- depositional environment
- Devonian
- dolostone
- Echinodermata
- Famennian
- Frasnian
- Idaho
- Jefferson Group
- Lemhi Range
- limestone
- Lost River Range
- marine environment
- Mississippian
- Montana
- Nisku Formation
- North America
- packstone
- paleogeography
- Paleozoic
- sedimentary basins
- sedimentary rocks
- sedimentary structures
- shale
- shelf environment
- turbidite
- United States
- Upper Devonian
- upper Frasnian
- upper Paleozoic
- Three Forks Formation
- Sappington Formation
- Trident Member
- Winterburn Formation
- Grandview Canyon