NEWADVANCES IN DEVONIAN CARBONATES: OUTCROP ANALOGS, RESERVOIRS AND CHRONOSTRATIGRAPHY
The Devonian stratigraphic record contains a wealth of information that highlights the response of carbonate platforms to both global-scale and local phenomena that drive carbonate architecture and productivity. Signals embedded particularly in the Middle-Upper Devonian carbonate record related to biotic crises and stressed oceanic conditions, long-term accommodation trends, and peak greenhouse to transitional climatic changes are observed in multiple localities around the world and temporally constrained by biostratigraphy, highlighting distinct and impactful global controls. Devonian datasets also stress the importance of local or regional phenomena, such as bolide impacts, the effects of terrestrial input and paleogeography, syn-depositional tectonics, and high-frequency accommodation drivers, which add complexity to the carbonate stratigraphic record when superimposed on global trends. The unique occurrence of well-studied and pristinely preserved reefal carbonate outcrop and subsurface datasets, ranging across the globe from Australia to Canada, allows for a detailed examination of Devonian carbonate systems from a global perspective and the opportunity to develop well-constrained predictive relationships and conceptual models. Advances in the understanding of the Devonian carbonate system is advantageous considering, not only the classic conventional reservoirs such as the pinnacle reefs of the Alberta Basin, but also emerging conventional reservoirs in Eurasia, and many unconventional plays in North America. The papers in this volume provide updated stratigraphic frameworks for classic Devonian datasets using integrated correlation approaches; new or synthesized frameworks for less studied basins, reservoirs, or areas; and discussions on the complex interplay of extrinsic and intrinsic controls that drive carbonate architectures, productivity, and distribution. The 13 papers in this special publication include outcrop and subsurface studies of Middle to Upper Devonian carbonates of western Canada, the Lennard Shelf of the Canning Basin, Western Australia, and the western USA.
INTEGRATED STRATIGRAPHIC CORRELATION OF UPPER DEVONIAN PLATFORM-TO-BASIN CARBONATE SEQUENCES, LENNARD SHELF, CANNING BASIN, WESTERN AUSTRALIA: ADVANCES IN CARBONATE MARGIN-TO-SLOPE SEQUENCE STRATIGRAPHY AND STACKING PATTERNS
-
Published:January 01, 2017
-
CiteCitation
Ted E. Playton, Roger M. Hocking, Eric Tohver, Kelly Hillbun, Peter W. Haines, Kate Trinajstic, Brett Roelofs, David A. Katz, Joseph L. Kirschvink, Kliti Grice, Paul Montgomery, Jeroen Hansma, Maodu Yan, Sergei Pisarevsky, Svenja Tulipani, Ken Ratcliffe, Samuel Caulfield-Kerney, David Wray, 2017. "INTEGRATED STRATIGRAPHIC CORRELATION OF UPPER DEVONIAN PLATFORM-TO-BASIN CARBONATE SEQUENCES, LENNARD SHELF, CANNING BASIN, WESTERN AUSTRALIA: ADVANCES IN CARBONATE MARGIN-TO-SLOPE SEQUENCE STRATIGRAPHY AND STACKING PATTERNS", NEWADVANCES IN DEVONIAN CARBONATES: OUTCROP ANALOGS, RESERVOIRS AND CHRONOSTRATIGRAPHY, Ted E. Playton, Charles Kerans, John A.W. Weissenberger
Download citation file:
- Share
-
Tools
Abstract:
High-resolution, time-significant correlations are integral to meaningful stratigraphic frameworks in depositional systems but may be difficult to achieve using traditional sequence stratigraphic or biostratigraphic approaches alone, particularly in geologically complex settings. In steep, reefal carbonate margin-to-slope systems, such correlations are essential to unravel shelf-to-basin transitions, characterize strike variability, and develop predictive sequence stratigraphic models—concepts that are currently poorly understood in these heterogeneous settings. The Canning Basin Chronostratigraphy Project integrates multiple independent data sets (including biostratigraphy, magnetostratigraphy, stable isotope chemostratigraphy, and sequence stratigraphy) extracted from Upper Devonian (Frasnian and Famennian) reefal platform exposures along the Lennard Shelf, Canning Basin, Western Australia. These were used to generate a well-constrained stratigraphic framework and shelf-to-basin composite reconstruction of the carbonate system.
The resultant integrated framework allows for unprecedented analysis of carbonate margin-to-slope heterogeneity, depositional architecture, and sequence stratigraphy along the Lennard Shelf. Systems tract architecture, facies partitioning, and stacking patterns of margin to lower-slope environments were assessed for six composite-scale sequences that form part of a transgressive-to-regressive supersequence and span the Frasnian–Famennian (F–F) biotic crisis. Variations are apparent in margin styles, foreslope facies proportions, dominant resedimentation processes, downslope contributing sediment factories, and vertical rock successions, related to hierarchical accommodation signals and ecological changes associated with the F–F boundary. We present these results in the form of carbonate margin-to-basin sequence stratigraphic models and associations that link seismic-scale architecture to fine-scale facies heterogeneity. These models provide a predictive foundation for characterization of steep-sided flanks of reefal carbonate platform systems that is useful for both industry and academia. This study emphasizes the utility of an integrated stratigraphic approach and the insights gained from better-constrained facies and stratal architecture analysis, insights that were not achievable with traditional sequence stratigraphic or biostratigraphic techniques alone.
- Australasia
- Australia
- basins
- biogenic structures
- bioherms
- biostratigraphy
- carbonate platforms
- carbonate rocks
- chronostratigraphy
- continental margin
- continental shelf
- continental slope
- correlation
- depositional environment
- Devonian
- Famennian
- Frasnian
- Lennard Shelf
- Paleozoic
- sedimentary basins
- sedimentary rocks
- sedimentary structures
- sequence stratigraphy
- stratigraphy
- Upper Devonian
- Western Australia