Skip to Main Content
Book Chapter

Petrophysical properties

By
Published:
January 01, 2017

Abstract

Porosity of shales is an important parameter that impacts rock strength for seal or wellbore integrity, gas-in-place calculations for unconventional resources or the diffusional solute and gas transport in these microporous materials. From a well section obtained from the Mont Terri Underground Rock Laboratory in St Ursanne, Switzerland, we determined porosity, pore size distribution and specific surface areas on a set of 13 Opalinus Clay samples. The porosity methods employed are helium-pycnometry, water and mercury injection porosimetry, liquid saturation and immersion, and low pressure N2 sorption, as well as small-angle to ultra-small-angle neutron scattering (SANS–USANS). These were used in addition to mineralogical and geochemical methods for sample analysis that comprise X-ray diffraction, X-ray fluorescence, total organic carbon content and cation exchange capacity. We find large variations in total porosity, ranging from approximately 23% for the neutron-scattering method to approximately 10% for mercury injection porosimetry. These differences can partly be related to differences in pore accessibility, while no or negligible inaccessible porosity was found. Pore volume distributions between neutron scattering and low-pressure sorption compare very well but differ significantly from those obtained from mercury porosimetry: this is realistic since the latter provides information on pore throats only, and the two former methods on pore throats and pore bodies. Finally, we find that specific surface areas determined using low-pressure sorption and neutron scattering match well.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Geomechanical and Petrophysical Properties of Mudrocks

E. H. Rutter
E. H. Rutter
University of Manchester, UK
Search for other works by this author on:
J. Mecklenburgh
J. Mecklenburgh
University of Manchester, UK
Search for other works by this author on:
K. Taylor
K. Taylor
University of Manchester, UK
Search for other works by this author on:
Geological Society of London
Volume
454
ISBN electronic:
978-1-78620-335-9
Publication date:
January 01, 2017

GeoRef

References

Related

Citing Books via

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal