Skip to Main Content
Book Chapter

Transient Diffusive Electromagnetic Field Computation—A Structured Approach Based on Reciprocity

Adrianus T. de Hoop
Adrianus T. de Hoop
Laboratory of Electromagnetic Research, Faculty of Electrical Engineering, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.
Search for other works by this author on:
January 01, 1999


The reciprocity theorem for transient diffusive electromagnetic fields is taken as the point of departure for developing computational methods to model such fields. Mathematically, the theorem is representative of any weak formulation of the field problem. Physically, the theorem describes the interaction between (a discretized version of) the actual field and a suitably chosen computational state. The choice of the computational state determines which type of computational method results from the analysis. It is shown that the finite-element method, the integral-equation method, and the domain-integration method can be viewed as particular cases of discretization of the reciprocity relation. The local field representations of the electric- and the magnetic-field strengths in terms of edge-element expansion functions are worked out in some detail.

The emphasis is on time-domain methods. The relationship with complex frequency-domain methods is indicated and used to symmetrize the basic field equations. This symmetrization expresses the correspondence that exists between transient electromagnetic wavefields in lossless media and transient diffusive electromagnetic fields in conductive media where the electric displacement-current contribution to the field can be neglected in the time window of observation. This aspect is also of importance in numerical modeling.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables


Geophysical Developments Series

Three-Dimensional Electromagnetics

Society of Exploration Geophysicists
ISBN electronic:
Publication date:
January 01, 1999




A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now