Skip to Main Content
Book Chapter

CASE HISTORY 10: Integrated Interpretation, 3-D Map Migration and VSP Modeling Project, Northern U.K. Southern Gas Basin*

J. M. Reilly
J. M. Reilly
Published with the permission of the European Association of Exploration Geophysicists and Geophysical Prospecting
Search for other works by this author on:
January 01, 1991


Depth conversion in the northern portion of the U.K. Southern Gas Basin is complicated by the presence of (Permian) Zechstein salt swells and diapirs. In addition, the post-Zechstein (post-Permian) section displays large lateral velocity variations. The primary agents which control the velocity of this stratigraphic section are (1) depth of burial dependency, (2) lithologic variation within individual formations, and (3) the effects of subsequent tectonic inversion. An integrated approach which combines well velocity, seismic velocity, and seismic interpretation is required for accurate depth estimation.

In 1988 Mobil and partners drilled an exploratory well in the northern portion of the U.K. Southern Gas Basin. This well was located near the crest of a Zechstein salt diapir. Over 2000 m of Zechstein were encountered in the well. The Permian Rotliegendes objective was penetrated at a depth of over 3700 m.

The initial delineation of the objective structure was based on the results of three-dimensional (3-D) map migration of the seismic time interpretation. Spatially variant interval velocity functions were used to depth convert through five of the six mapped horizons. Both well- and model-based seismic interval velocity analysis information were used to construct these functions.

A moving source well seismic survey was conducted. The survey was run in two critical directions. In conjunction with presurvey modeling, it was possible to immediately confirm the structural configuration as mapped out to a distance of seven kilometers from the well. Post-survey 3-D map migration and modeling was employed to further refine the structural interpretation. Although the question of stratigraphic anisotropy was considered in the evaluation of the long offset modeling, no evidence was found in the field data to support a significant effect.

Finally, comparisons were made of: curved ray versus straight ray migration/modeling, midpoint-depth velocity versus (depth dependent) instantaneous velocity functions, and Hubral versus Fermat based map depth migration algorithms. Significant differences in the results were observed for structural dips exceeding 15 degrees and/or offsets exceeding 6 km. Map depth migration algorithms which employed both curved rays and spatially variant instantaneous velocity functions were found to best approximate the “true” geologic velocity field in the study area.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables


Geophysical Developments Series

Seismic Modeling of Geologic Structures: Applications to Exploration Problems

Stuart W. Fagin
Stuart W. Fagin
Search for other works by this author on:
Society of Exploration Geophysicists
ISBN electronic:
Publication date:
January 01, 1991




A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal