Skip to Main Content

Abstract

The large, enigmatic members of the Ediacaran biota have received much attention regarding their possible affinities and mode of life. Fossil evidence reveals that many Ediacaran animals, such as the rangeomorphs, were characterized by extensive surface areas, lived in close association with the seafloor and were non-motile. We argue for the presence of a simple, diploblastic body plan in these early animals and discuss the means by which they probably derived nutrients from chemosynthetic bacteria thriving at the sediment–water interface. We consider that the large surface area of some Ediacaran organisms in the Avalonian biota may have been an adaptation for maximizing a phagocytotic or chemosymbiotic surface. Ediacaran animals probably increased the availability of oxygen along their ventral surface either by diffusion or ciliary pumping. This increased supply of oxygen to the sediment is inferred to have simultaneously increased the productivity of their food source (chemosynthetic bacteria) and restricted the build-up of toxic sulphides in the pore waters below their bodies. This is an example of a very simple form of ecosystem engineering.

Gold Open Access: This article is published under the terms of the CC-BY 3.0 license.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal