Skip to Main Content
Skip Nav Destination


Resolution Limits for Wave Equation Imaging: In 2014, I coauthored the following reprinted paper with Yunsong Huang on deriving resolution limits for imaging wave equations, based on our work together at King Abdullah University of Science and Technology (KAUST), in Thuwal, Saudi Arabia. As noted in the opening paragraphs, “To optimize the use of wave equation imaging one must understand its limits of spatial resolution. Without this understanding, models can be over parameterized and lead to solutions that honor the data but violate the wavelength-based resolution limits of wave propagation. Such models should be avoided in our attempts to understand the earth.” Resolution limits for wave equation imaging, published in the Journal of Applied Geophysics, builds on developments over the past 30 years in mathematically defining resolution limits. It begins by showing how wavepaths can estimate resolution for traveltime tomography and migration. Spatial resolution is defined intuitively as the minimum width and height of the intersection of Fresnel zones at the trial image point. Then, that definition is proved by deriving the resolution limits for each variety of wavepath, showing their relationship to the acquisition geometry. This work gives a comprehensive asymptotic analysis of the model resolution function for least-squares migration, with resulting formulae that allow the geoscientist to optimize resolution characteristics in full-waveform inversion, least-squares migration, and reverse time migration.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal