Skip to Main Content
Book Chapter

A Synthetic Example of Anisotropic P-Wave Processing for a Model from the Gulf of Mexico

By
Baoniu Han
Baoniu Han
*
Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden,
CO 80401-1887
Search for other works by this author on:
Tagir Galikeev
Tagir Galikeev
Texaco North America Production,
4601 DTC Blvd., Denver, CO 80237
Search for other works by this author on:
Vladimir Grechka
Vladimir Grechka
*
Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden,
CO 80401-1887
Search for other works by this author on:
Jérôme Le Rousseau
Jérôme Le Rousseau
*
Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden,
CO 80401-1887
Search for other works by this author on:
Ilya Tsvankin
Ilya Tsvankin
*
Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden,
CO 80401-1887
Search for other works by this author on:
Published:
January 01, 2001

Abstract

Transverse isotropy with a vertical symmetry axis (VTI media) is the most common anisotropic model for sedimentary basins. Here, we apply P-wave processing algorithms developed for VTI media to a 2-D synthetic data set generated by a finite difference code. The model, typical for the Gulf of Mexico, has a moderate structural complexity and includes a salt body and a dipping fault plane. Using the Alkhalifah-Tsvankin dip-moveout (DMO) inversion method, we estimate the anisotropic coefficient η responsible for the dip dependence of P-wave NMO velocity in VTI media. In combination with the normal-moveout (NMO) velocity from a horizontal reflector [Vnmo(0), the argument “0” refers to reflector dip], η is sufficient for performing all P-wave time-processing steps, including NMO and DMO corrections, prestack and poststack time migration. The NMO (stacking) velocities needed to determine Vnmo(0) and η are picked from conventional semblance velocity panels for reflections from subhorizontal interfaces, the dipping fault plane and the flank of the salt body. To mitigate the instability in the interval parameter estimation, the dependence of Vnmo(0) and η on the vertical reflection time is approximated by Chebyshev polynomials with the coefficients found by “global” fitting of all velocity picks.

We perform prestack depth migration for the reconstructed anisotropic model and two isotropic models with different choices of the velocity field. The anisotropic migration result has a good overall quality, but reflectors are mispositioned in depth because the vertical velocity for this model cannot be obtained from surface -wave data alone. The isotropic migrated section with the NMO velocity Vnmo(0) substituted for the isotropic velocity also has the wrong depth scale and is somewhat inferior to the anisotropic result in the focusing of dipping events. Still, the image distortions are not significant because the parameter η, which controls NMO velocity for dipping reflectors, is rather small (the average value of η is about 0.05). In contrast, the isotropic section migrated with the vertical velocity has a poor quality (although the depth of the subhorizontal reflectors is correct) due to the fact that in VTI media Vo can be used to stack neither dipping nor horizontal events. The difference between vo and the zero-dip stacking velocity Vnmo(0) is determined by the anisotropic coefficient δ, which is greater than η in our model (on average δ ≈ 0.1).

You do not currently have access to this article.

Figures & Tables

Contents

Society of Exploration Geophysicists Open File

Anisotropy 2000: Fractures, Converted Waves, and Case Studies

L. Ikelle
L. Ikelle
Search for other works by this author on:
A. Gangi
A. Gangi
Search for other works by this author on:
Society of Exploration Geophysicists
Volume
6
ISBN electronic:
9781560801771
Publication date:
January 01, 2001

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal