Skip to Main Content
Book Chapter

Tectonomagmatic setting of lava packages in the Mandla lobe of the eastern Deccan volcanic province, India: palaeomagnetism and magnetostratigraphic evidence

By
Vamdev Pathak
Vamdev Pathak
Dr K.S. Krishnan Geomagnetic Research Laboratory, Jhunsi, Allahabad 221505, IndiaDepartment of Geology, University of Delhi, Delhi 110 007, India
Search for other works by this author on:
S. K. Patil
S. K. Patil
Dr K.S. Krishnan Geomagnetic Research Laboratory, Jhunsi, Allahabad 221505, India
Search for other works by this author on:
J. P. Shrivastava
J. P. Shrivastava
Department of Geology, University of Delhi, Delhi 110 007, India
Search for other works by this author on:
Published:
January 01, 2017

Abstract

Flow-by-flow palaeomagnetic measurements of 37 lava flows in the 900 m-thick, isolated lava pile around Mandla in the eastern Deccan Volcanic Province (DVP) reveals multiple magnetic polarity events: implying C29n–C28r–C28n magnetostratigraphy. Magnetic polarity results when traced out from section to section, maintaining the order of superposition, show juxtaposition of lava packages with distinct characters near Deori (e.g. flows 1–4 abated against flows 5–14) and the Dindori areas. At Dindori and towards its south, the distinct lava packages (e.g. flows 15–27 and flows 28–37) are juxtaposed along the course of Narmada river. It is explained by the presence of four normal post-Deccan faults in the Nagapahar, Kundam–Deori, Dindori and Badargarh–Amarkantak sectors: thus, signifying structural complexity with vertical shifts or offset of 150–300 m. Magnetic chron reversals in conjunction with field and chemical data support these findings. Further, these lavas are compositionally akin to Bushe, Poladpur, Ambenali and Mahableshwar Formational lavas, and follow the same stratigraphic order as in the Western Ghats. Alternating field (AFD) and thermal demagnetizations (THD) isolate the normal mean direction of the Mandla lobe: D=344.5° and I=−30°, where D and I are the mean declination and inclination of the each lava flow (α95=8.2; K=72.6; N=17, where α95 is the half-angle of the cone of 95% confidence about the mean direction, K is the precision parameter and N is the number of flows). The Virtual Geomagnetic Pole (VGP) position determined for these lavas, when compared with the Deccan Super Pole, indicates concordance with the main Deccan volcanic province, thus assigning a shorter period of eruption close to the Cretaceous–Palaeogene boundary (K/PB) for the eastern and western Deccan Traps.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Geological Society, London, Special Publications

Tectonics of the Deccan Large Igneous Province

S. Mukherjee
S. Mukherjee
Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
Search for other works by this author on:
A. A. Misra
A. A. Misra
Exploration, Reliance Industries Ltd, Mumbai 400 701, Maharashtra, India
Search for other works by this author on:
G. Calvès
G. Calvès
Université Toulouse 3, Paul Sabatier, Géosciences Environnement Toulouse, 14 avenue Edouard Belin, 31400, Toulouse, France
Search for other works by this author on:
M. Nemčok
M. Nemčok
EGI at University of Utah, 423 Wakara Way, Suite 300, Salt Lake City, UT 84108, USAEGI Laboratory at SAV, Dúbravskácesta 9, 840 05 Bratislava, Slovakia
Search for other works by this author on:
Geological Society of London
Volume
445
ISBN electronic:
9781786203281
Publication date:
January 01, 2017

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal