Skip to Main Content
Book Chapter

Geochemical evolution of igneous rocks and changing magma sources during the formation and closure of the Central American land bridge of Panama

By
Gerhard Wörner
Gerhard Wörner
Abteilung Geochemie, Geowissenschaftliches Zentrum Göttingen, Universität Göttingen, Goldschmidtstrasse 1, 37077 Göttingen, Germany
Search for other works by this author on:
Russell S Harmon
Russell S Harmon
Army Research Office, U.S. Army Research Laboratory, P.O. Box 12211, Research Triangle Park, North Carolina 27709, USA
Search for other works by this author on:
Wencke Wegner
Wencke Wegner
Abteilung Geochemie, Geowissenschaftliches Zentrum Göttingen, Universität Göttingen, Goldschmidtstrasse 1, 37077 Göttingen, Germany
Search for other works by this author on:
Published:
June 01, 2009

The geological development of Panama’s isthmus resulted from intermittent magmatism and oceanic plate interactions over approximately the past 100 m.y. Geochemical data from ~300 volcanic and intrusive rocks sampled along the Cordillera de Panama document this evolution and are used to place it in a tectonic framework. Three distinct trace-element signatures are recognized in the oldest basement rocks: (1) oceanic basement of the Caribbean large igneous province (CLIP basement) displays flat trace-element patterns, (2) CLIP terranes show enriched ocean-island basalt (OIB) signatures, and (3) CLIP rocks exhibit arc signatures. The Chagres igneous complex represents the oldest evidence of arc magmatism in Panama. These rocks are tholeiitic, and they have enriched but highly variable fluid-mobile element (Cs, Ba, Rb, K, Sr) abundances. Ratios of these large ion lithophile elements LILEs) to immobile trace elements (e.g., Nb, Ta, middle and heavy rare earth elements) have a typical, but variably depleted, arc-type character that was produced by subduction below the CLIP oceanic plateau. These early arc rocks likely comprise much of the upper crust of the Cordillera de Panama and indicate that by 66 Ma, the mantle wedge beneath Panama was chemically distinct (i.e., more depleted) and highly variable in composition compared to the Galapagos mantle material, from which earlier CLIP magmas were derived.

Younger Miocene andesites were erupted across the Cordillera de Panama from 20 to 5 Ma, and these display relatively uniform trace-element patterns. High field strength elements (HFSEs) increase from tholeiitic to medium-K arc compositions. The change in mantle sources from CLIP basement to arc magmas indicates that enriched sub-CLIP (i.e., plume) mantle material was no longer present in the mantle wedge by the time that subduction magmatism commenced in the area. Instead, a large spectrum of mantle compositions was present at the onset of arc magmatism, onto which the arc fluid signature was imprinted. Arc maturation led to a more homogeneous mantle wedge, which became progressively less depleted due to mixing or entrainment of less-depleted backarc mantle through time.

Normal arc magmatism in the Cordillera de Panama terminated around 5 Ma due to the collision of a series of aseismic ridges with the developing and emergent Panama landmass. Younger heavy rare earth element–depleted magmas (younger than 2 Ma), which still carry a strong arc geochemical signature, were probably produced by ocean-ridge melting after their collision.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

GSA Memoirs

Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision

Suzanne Mahlburg Kay
Suzanne Mahlburg Kay
Search for other works by this author on:
Víctor A. Ramos
Víctor A. Ramos
Search for other works by this author on:
William R. Dickinson
William R. Dickinson
Search for other works by this author on:
Geological Society of America
Volume
204
ISBN print:
9780813712048
Publication date:
June 01, 2009

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Related Articles
Related Book Content
This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now