Skip to Main Content
Book Chapter

Simulating the thermorheological evolution of channel-contained lava: FLOWGO and its implementation in EXCEL

By
Andrew J. L. Harris
Andrew J. L. Harris
1
Laboratoire Magmas et Volcans, Université Blaise Pascal–CNRS–IRD, OPGC, 5 rue Kessler, 63038 Clermont-Ferrand, France
Search for other works by this author on:
Maéva Rhéty
Maéva Rhéty
1
Laboratoire Magmas et Volcans, Université Blaise Pascal–CNRS–IRD, OPGC, 5 rue Kessler, 63038 Clermont-Ferrand, France
Search for other works by this author on:
Lucia Gurioli
Lucia Gurioli
1
Laboratoire Magmas et Volcans, Université Blaise Pascal–CNRS–IRD, OPGC, 5 rue Kessler, 63038 Clermont-Ferrand, France
Search for other works by this author on:
Nicolas Villeneuve
Nicolas Villeneuve
2
Laboratoire GéoSciences Réunion, 15 Avenue René Cassin, BP 7151, 97715 Saint Denis messagerie cedex 9, La Réunion, France
Search for other works by this author on:
Raphaël Paris
Raphaël Paris
1
Laboratoire Magmas et Volcans, Université Blaise Pascal–CNRS–IRD, OPGC, 5 rue Kessler, 63038 Clermont-Ferrand, France
Search for other works by this author on:
Published:
January 01, 2016

Abstract

FLOWGO is a one-dimensional model that tracks the thermorheological evolution of lava flowing down a channel. The model does not spread the lava but, instead, follows a control volume as it descends a line of steepest descent centred on the channel axis. The model basis is the Jeffreys equation for Newtonian flow, modified for a Bingham fluid, and a series of heat loss equations. Adjustable relationships are used to calculate cooling, crystallization and down-channel increases in viscosity and yield strength, as well as the resultant decrease in velocity. Here we provide a guide that allows FLOWGO to be set up in Excel. In doing so, we show how the model can be executed using a slope profile derived from Google™ Earth. Model simplicity and ease of source-term input from Google™ Earth means that this exercise allows (i) easy access to the model, (ii) quick, global application and (iii) use in a teaching role. Output is tested using measurements made for the 2010 eruption of Piton de la Fournaise (La Réunion Island). The model is also set up for rapid syneruptive hazard assessment at Piton de la Fournaise, as we show using the example of the response to the June 2014 eruption.

You do not currently have access to this article.

Figures & Tables

Contents

Geological Society, London, Special Publications

Detecting, Modelling and Responding to Effusive Eruptions

A. J. L. Harris
A. J. L. Harris
Université Blaise Pascal, France
Search for other works by this author on:
T. De Groeve
T. De Groeve
Joint Research Centre of the European Commission, Italy
Search for other works by this author on:
F. Garel
F. Garel
Université de Montpellier, France
Search for other works by this author on:
S. A. Carn
S. A. Carn
Michigan Technological University, USA
Search for other works by this author on:
Geological Society of London
Volume
426
ISBN electronic:
9781862399587
Publication date:
January 01, 2016

References

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal