Skip to Main Content
Book Chapter

Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system

By
D. Coppola
D. Coppola
Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10135 Torino, Italy
Search for other works by this author on:
M. Laiolo
M. Laiolo
Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10135 Torino, ItalyDipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy
Search for other works by this author on:
C. Cigolini
C. Cigolini
Dipartimento di Scienze della Terra, Università di Torino, Via Valperga Caluso 35, 10135 Torino, ItalyNatRisk, Centro Interdipartimentale sui Rischi Naturali in Ambiente Montano e Collinare, Università degli Studi di Torino, Torino, Italy
Search for other works by this author on:
D. Delle Donne
D. Delle Donne
Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50121 Firenze, ItalyDipartimento di Scienze della Terra e del Mare, Università di Palermo, Via Archirafi 22, 90123 Palermo, Italy
Search for other works by this author on:
M. Ripepe
M. Ripepe
Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy
Search for other works by this author on:
Published:
January 01, 2016

Abstract

We describe a new volcanic hotspot detection system, named Middle InfraRed Observation of Volcanic Activity (MIROVA), based on the analysis of infrared data acquired by the Moderate Resolution Imaging Spectroradiometer sensor (MODIS). MIROVA uses the middle infrared radiation (MIR), measured by MODIS, in order to detect and measure the heat radiation deriving from volcanic activity. The algorithm combines spectral and spatial principles, allowing the detection of heat sources from 1 megawatt (MW) to more than 10 gigawatt (GW). This provides a unique opportunity to: (i) recognize small-scale variations in thermal output that may precede the onset of effusive activity; (ii) track the advance of large lava flows; (iii) estimate lava discharge rates; (iv) identify distinct effusive trends; and, lastly, (v) follow the cooling process of voluminous lava bodies for several months. Here we show the results obtained from data sets spanning 14 years recorded at the Stromboli and Mt Etna volcanoes, Italy, and we investigate the above aspects at these two persistently active volcanoes. Finally, we describe how the algorithm has been implemented within an operational near-real-time processing chain that enables the MIROVA system to provide data and infrared maps within 1–4 h of the satellite overpass.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Geological Society, London, Special Publications

Detecting, Modelling and Responding to Effusive Eruptions

A. J. L. Harris
A. J. L. Harris
Université Blaise Pascal, France
Search for other works by this author on:
T. De Groeve
T. De Groeve
Joint Research Centre of the European Commission, Italy
Search for other works by this author on:
F. Garel
F. Garel
Université de Montpellier, France
Search for other works by this author on:
S. A. Carn
S. A. Carn
Michigan Technological University, USA
Search for other works by this author on:
Geological Society of London
Volume
426
ISBN electronic:
9781862399587
Publication date:
January 01, 2016

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Related Articles
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal