Skip to Main Content
Book Chapter

Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution

By
V. Khaidukov
V. Khaidukov
Siberian Branch of Russian Academy of Science, Geophysical Institute, pr.Koptyuga 3, Novosibirsk, Russia.
Search for other works by this author on:
E. Landa
E. Landa
OPERA (Applied Geophysical Research Group), Pau University, Batiment I.F.R. rue Jules Ferry, 64000 Pau, France; on leave from Geophysical Institute of Israel, Lod, Israel.
Search for other works by this author on:
T. J. Moser
T. J. Moser
Fugro-Jason BV, c/o van Alkemadelaan 550A, 2597 AV The Hague, The Netherlands.
Search for other works by this author on:
Published:
January 01, 2016

Abstract

Diffractions always need more advertising. It is true that conventional seismic processing and migration are usually successful in using specular reflections to estimate subsurface velocities and reconstruct the geometry and strength of continuous and pronounced reflectors. However, correct identification of geological discontinuities, such as faults, pinch-outs, and small-size scattering objects, is one of the main objectives of seismic interpretation. The seismic response from these structural elements is encoded in diffractions, and diffractions are essentially lost during the conventional processing/migration sequence. Hence, we advocate a diffraction-based, data-oriented approach to enhance image resolution—as opposed to the traditional image-oriented techniques, which operate on the image after processing and migration. Even more: it can be shown that, at least in principle, processing of diffractions can lead to superresolution and the recovery of details smaller than the seismic wavelength.

The so-called reflection stack is capable of effectively separating diffracted and reflected energy on a prestack shot gather by focusing the reflection to a point while the diffraction remains unfocused over a large area. Muting the reflection focus and defocusing the residual wavefield result in a shot gather that contains mostly diffractions. Diffraction imaging applies the classical (isotropic) diffraction stack to these diffraction shot gathers. This focusing-muting-defocusing approach can successfully image faults, small-size scattering objects, and diffracting edges. It can be implemented both in model-independent and model-dependent contexts. The resulting diffraction images can greatly assist the interpreter when used as a standard supplement to full-wave images.

You do not currently have access to this article.

Figures & Tables

Contents

Society of Exploration Geophysicists Geophysics Reprint Series

Seismic Diffraction

Kamil Klem-Musatov
Kamil Klem-Musatov
Search for other works by this author on:
Henning Hoeber
Henning Hoeber
Search for other works by this author on:
Michael Pelissier
Michael Pelissier
Search for other works by this author on:
Tijmen Jan Moser
Tijmen Jan Moser
Search for other works by this author on:
Society of Exploration Geophysicists
Volume
30
ISBN electronic:
9781560803188
Publication date:
January 01, 2016

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal