Skip to Main Content
Skip Nav Destination

The Paleocene–Eocene-aged Sele Formation is developed across the basinal region of the Central North Sea. The section comprises a number of deep-marine fan systems that expanded and contracted across the basin floor in response to relative sea-level changes on the basin margin and fluctuating sediment yield off the Scottish landmass modulated by climate and hinterland uplift. Persistent sediment entry points to the basin resulted in the development of discrete axial and transverse fan fairways with a geometry dictated by an irregular bathymetry sculpted by differential compaction across Mesozoic faults, halokinesis and antecedent fan systems. A high-resolution biostratigraphic framework has allowed the evolution of fan-dispersal systems in response to these effects to be tracked across the basin within four genetic sequences. The proximal parts of the fans comprised channel complexes of low sinuosity, high lateral offset, and low aggradation. The development of these systems in a bathymetrically confined corridor of the Central Graben (c. 65 km wide), combined with high sediment supply, resulted in the eventual burial of any underlying relief. The behaviour of sand-rich reservoirs in this region is dominated by the permeability contrast between high-quality channel fairways and more heterolithic overbank regions, with the potential for early water breakthrough and aquifer coning in the channel fairways, and unswept volumes in overbank locations. Compartmentalization of compensationally stacked channel bodies occurs locally, with stratigraphic trapping caused by lateral channel pinch-outs, channel-base debrites, mud-rich drapes and abandonment fines. Towards the southern part of Quadrant 22, approximately 150 km down-palaeoflow, the systems became less confined and in this region are dominated by channel–lobe complexes, which continued to interact with an irregular bathymetry controlled by antecedent fans, mass-transport complexes and halokinesis in the form of rising salt diapirs. Reservoirs in this region are inherently stratigraphically compartmentalized by their heterolithic lithology and compensational stacking of lobes, and further complicated by structuration and instability induced by the diapiric or basement structures needed to generate a trapping structure in these settings.

You do not currently have access to this chapter.

Figures & Tables




Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal