Skip to Main Content

Abstract

The east coast of India represents a passive Atlantic-type peri-cratonic margin setup. The Krishna-Godavari basin along the east coast of India covers the deltaic and inter-deltaic areas of Krishna and Godavari rivers and extends into the offshore; it has an area of 1,45,000 sq. km. The basin evolved through crustal rifting and subsequent drifting during Mesozoic time, followed by major fluvial and marine Tertiary sedimentation.

A geologic model has been constructed for Neogene deep-water depositional systems in the Krishna-Godavari basin to conceptualize the reservoir architecture of complex channel-levee, overbank, and lobes on the shelf-slope geologic setting. While the channel-levee deposits are dominated by siltstone/sandstone prone facies assemblages, the lobes are predominantly fine-grained sandstone/siltstone/mudstone facies. High quality 3D seismic imaging and interpretation techniques, integrated with wire-line logs, litho-cut-tings and cores have been followed in characterizing the complex deep-water reservoirs. The study integrates different data sets and methodologies such as (1) high quality 3D seismic with rigorous quality control in acquisition and processing using interactive geological input; (2) imaging enhancement through pre-stack depth migration of selective areas; (3) extensive use of rock-physics attributes through inversion and AVO studies; (4) detailing of depositional architecture through stratal-amplitude attribute, spectral decomposition, and coherency slices; (5) high resolution wire-line logs and analysis; (6) detailed petrophysical and petro-logical evaluation of conventional cores, and (vii) quantitative computation of reservoir properties and improving bed resolution through simultaneous angle dependent inversion.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal