Skip to Main Content

Abstract

The Eocene Misoa Formation is a prolific producer of hydrocarbons in the Maracaibo basin and traditionally has been interpreted as being deposited in a fluvio-deltaic depositional system. Sedimentological interpretation of 1,534 ft (467.6 m) of core has led to the development of a new depositional model. The Misoa Formation C sands in the LAG-3047 area have been reinterpreted as being deposited from sustained fluvial-derived hyperpycnal flows. The conceptual hyperpycnal model has been used to guide correlation of 21 wireline logs and to provide a high-resolution stratigraphic model of the lower C Misoa sands. A geo-statistical approach was used to propagate the facies and the petrophysical properties in the geological model. However, some difficulties were encountered for propagating hyperpycnal channelized-lobe systems, since a standard object-modeling algorithm is useful only for fluvial systems. An alternative three-step methodology was developed to model channelized-lobe systems which proved to be very successful. Forty realizations of the geological model were generated to assess the uncertainty in the distribution of channelized-lobe systems between wells. Simulation was used to rank the realizations; the best realizations were chosen by historical pressure and production. Two upscaled grids were generated for simulation and prediction. The hyperpycnal depositional model aided in the simulation calibration process because reservoir compartments were easily modified to match the historical pressures and therefore connected reservoir pore volumes. At the end of the calibration process, these reservoir compartments could be used to define whether new wells would be likely to contribute to the proposed waterflood or to access new reservoir pools.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal