Skip to Main Content

Abstract

The Danube River Basin and the Black Sea represent a unique natural laboratory for studying source to sink and global change. We will address information on the “active sink” of the system, which represents the area of active deposition: sea level variation, sediment balance, and neotectonics. Also, we will discuss the evolution and quantification of climate, tectonics, and eustasy on the sedimentation in the western Black Sea basin, along both southern and northern margins, obtained from understanding the Danube deep-sea fan processes and sedimentation.

In the last decade, many of the geosciences studies carried out in the Black Sea have focused on the Holocene marine transgression. This topic has been fully discussed and is still a matter of debate. Since the DSDP drillings, the lithology and mineralogy of deep sediments from the Black Sea have been well studied. However, only few recent studies have focused on the deep-sea morphology and turbidite sedimentation in the western Black Sea basin, in which the main depositional feature is the Danube submarine fan.

Oceanographic surveys in the Black Sea in 1998, 2002, and 2004 carried out in the framework of French-Romanian joint project and the European ASSEM-BLAGE (EVK3-CT-2002-00090) project have collected a large amount of data (Multibeam echo sounder data, CHIRP seismic, as well as Kullenberg and Calypso cores). This paper presents insights from recent coring and seismic data recovered at the boundary of influence of both the distal part of the Danube turbiditic system and the Turkish margin. This data set provides a good record of changes in the sedimentary supply and climatic changes in the surrounding Black Sea since the last 25 ka. Based on this study, we demonstrate that the deep basin deposits bear the record of the late Quaternary paleoenvironmental changes.

Finally, the western Black Sea basin constitutes an asymmetric subsident basin bordered by a northern passive margin containing confined mid-size, mud-rich turbiditic systems, and a tectonically active southern turbiditic ramp margin.

You do not currently have access to this chapter.

Figures & Tables

Contents

References

Related

Citing Books via

Related Articles
Related Book Content
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal