Skip to Main Content
Book Chapter

Keynote Address

December 01, 2010


Physics-based forward numerical models have a wide variety of applications in areas such as geomorphology, stratigraphy, and geologic modeling. In this paper, the ExxonMobil process-based forward numerical models for simulating shallow and deep water depositional systems are introduced. Based on the physics of fluid flow and sediment transport, these models are capable of modeling many important natural geomorphic processes, such as channel initiation, lobe deposition, knick-point migration, channel avulsion, and formation of sedimentary waves, levees, and channel mouth bars.

A computer model was used to simulate East Breaks basin 4, which is the terminal basin of four interconnected intra-slope basins situated in the north-western Gulf of Mexico. An interpreted surface from a high-resolution 3D seismic survey was depth converted and used as the initial basal surface for simulations. The inlet location for turbidity flow also was interpreted from the seismic and provided to the computer model. A trial and error approach was used to determine the discharge of the flow as well as the volumetric concentration and the size distribution of particles in the flow. Simulation results were then converted to synthetic seismic and compared with actual seismic from the basin. The comparisons showed that the simulated sediment body geometries and stacking patterns closely resembled those observed in the seismic data.

Simulation results show that many of the complexities observed in such systems originate from the complex interactions between the evolving topography and the flow. The evolution of these systems often follows similar and predictable pathways. A common evolution pathway consists of following steps:

  1. Flow expansion at the channel mouth;

  2. Scouring in front of the channel mouth;

  3. Development of channel mouth bars;

  4. Local ponding of the flow by the channel mouth bar;

  5. Accelerated growth of levees and the formation of knick-points; and

  6. Subsequent avulsion and the extension of the channel.

This pathway appears to be scale invariant which could suggest a predictable distribution of sedimentary bodies in deltas and submarine fans.

The study has demonstrated that the forward numerical model is a powerful new geologic modeling tool. Prerequisites for effective modeling include: (1) accurate restoration of basin paleotopography; (2) realistic flow characteristics, including flow discharge and sediment concentration; or (3) estimates of sediment size distribution in the flow. These data are not obtained routinely from subsurface studies, and may not be obtained directly from subsurface data. However, they may be derived through integrated analysis of seismic volumes and well data. Including such analysis in the seismic interpretation and reservoir-characterization workflow is essential for the development and application of forward numerical models as next generation earth models.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables



Seismic Imaging of Depositional and Geomorphic Systems

Lesli J. Wood
Lesli J. Wood
Houston, Texas
Search for other works by this author on:
Toni T. Simo
Toni T. Simo
Houston, Texas
Search for other works by this author on:
Norman C. Rosen
Norman C. Rosen
Houston, Texas
Search for other works by this author on:
SEPM Society for Sedimentary Geology
ISBN electronic:
Publication date:
December 01, 2010




A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now