Skip to Main Content
Book Chapter

Lessons from Surface Soil Systems

January 01, 2013


Fourteen soil profiles from California were collected in order to measure the δ13C of coexisting soil calcite and organic matter. Thirteen of the profiles contained a measurable amount of calcite ranging from 0.04 to 54.6 wt %. Soil calcite δ13CPDB13C value vs. the calcite standard Peedee Belemnite) values range from −14.4 to 1.3‰, whereas organic matter δ13CPDB values range from −24.0 to −27.7‰.

The hydrology of these profiles is divided into two broad groups: (1) soils characterized by gravity-driven, piston-type vertical flow through the profile and (2) soils affected by groundwater within the profile at depths where calcite is present. The difference between soil calcite and organic matter δ13CPDB values, Δ13Ccc_om, is smaller in profiles affected by groundwater saturation as well as most Vertisols and may be a product of waterlogging. The larger Δ13Ccc-0m values in soils with gravity-driven flow are consistent with open-system mixing of tropospheric CO2 and CO2 derived from in situ oxidation of soil organic matter with mean soil PCO2 values potentially in excess of ~20,000 ppmV at the time of calcite crystallization. There is a correlation between estimates of soil PCO2 and a value termed “EppT.U” (kJm2/yr) among the soil profiles characterized by gravity-driven flow. EppT.U is the energy flux through the soil during periods of soil moisture utilization, and it is the product of water mass and temperature in the profile during the growing season. Thus, soils with high water-holding capacity/storage and/or low/high growing season temperature may form soil calcite in the presence of high soil PCO2, and vice versa. The results of this research have important implications for reconstructions of paleoclimate from stable carbon isotopes of calcareous paleosol profiles.

You do not currently have access to this article.

Figures & Tables


SEPM Special Publication

New Frontiers in Paleopedology and Terrestrial Paleoclimatology: Paleosols and Soil Surface Analog Systems

Steven G. Driese
Steven G. Driese
Search for other works by this author on:
Lee C. Nordt
Lee C. Nordt
Department of Geology, Baylor University, One Bear Place #97354, Waco, Texas 76798-7354, USA
Search for other works by this author on:
SEPM Society for Sedimentary Geology
ISBN electronic:
Publication date:
January 01, 2013




Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal