Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies

This book unites climate modelling, palaeoceanography and palaeontology to address fundamental events in the climate history of Earth over the past 600 million years. Understanding the ‘tipping points’ that have led to rapid changes in the Earth's climate is vitally important with the realization that humans modify global climate. In an effort to better understand past and future climate change, general circulation models have become the forerunners of attempts to simulate future climate. Although extraordinarily sophisticated, they remain imperfect tools that require ‘grounding’ in geological data. In this, the study of past major climate transitions like the Palaeozoic icehouse worlds and the extreme greenhouse of the Cretaceous are invaluable. Both the mechanisms that forced changes in the Earth's climate as well as the proxies that track these changes are discussed. The central message of the book is that general circulation models tested with geological data in an iterative ‘ground truth’ process provide the best estimates of the Earth's ancient climate.
The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons
-
Published:January 01, 2007
-
CiteCitation
P. J. Markwick, 2007. "The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons", Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, M. Williams, A. M. Haywood, F. J. Gregory, D. N. Schmidt
Download citation file:
- Share
-
Tools
Abstract
Palaeoclimate interpretations based on geological proxies of climate are fundamental to our understanding of climate change in the geological record. Most proxy definitions depend upon analogy with modern-day relationships, and the validity of this has long been questioned, especially for biological climate proxies. In the early 19th century the solution was to assume that if multiple proxies indicated the same climate then this increased the probability that the interpretation was correct. This probabilistic approach is advocated here. A further criticism has been that climate interpretations based on proxies are mainly qualitative. This is a problem when such data are...