Skip to Main Content
Book Chapter

Natural constraints on metamorphic reaction rates

Ethan F. Baxter
Ethan F. Baxter
Boston University, Department of Earth Sciences685 Commonwealth Avenue, Boston, MA 02215,
Search for other works by this author on:
January 01, 2003


Quantitative constraints on the rates at which metamorphic reactions proceed in nature are now available from several sources. Most common are predictions made on the basis of laboratory kinetic data. However, the applicability of such laboratory-based predictions has long been questioned and many observations in the field now suggest much slower rates. Here, published quantitative field-based constraints on high temperature (>400 °C) reaction rates are assembled from a variety of sources. Reaction rates attending regional metamorphism are four to seven orders of magnitude slower than most laboratory-based predictions. A general rate law for regional metamorphism has been derived which best describes these field-based data:log10(Rnet)0.0029T9.6±1 where Rnet is the net reaction rate (g/cm2/a) and T is temperature (°C). At the same time, natural reaction rates attending contact metamorphism differ from laboratory-based predictions by less than two orders of magnitude, and are in close agreement at higher temperatures. Thus, while existing laboratory-based kinetic data may be judiciously applied to some contact metamorphic systems, laboratory-based kinetic predictions clearly misrepresent regional metamorphism. To explain this kinetic discrepancy, regional metamorphic reaction rates may be limited by slow intergranular transport due to comparatively limited (or transient) availability of aqueous fluid in the intergranular medium. The general field-based rate law may be applied to regional metamorphic, and other environments (i.e. ultrahigh pressure or ultrahigh temperature metamorphism), if similar system characteristics (mainly, low aqueous fluid content) can be inferred.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables


Geological Society, London, Special Publications

Geochronology: Linking the Isotopic Record with Petrology and Textures

D. Vance
D. Vance
Royal HollowayUniversity of London, UK
Search for other works by this author on:
W. Müller
W. Müller
The Australian National UniversityAustralia
Search for other works by this author on:
I. M. Villa
I. M. Villa
University of BernSwitzerland
Search for other works by this author on:
Geological Society of London
ISBN electronic:
Publication date:
January 01, 2003




A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now