Skip to Main Content
Book Chapter

Absorption

Published:
January 01, 2008

Abstract

Attenuation is a reduction in the energy of a traveling wave as it propagates through a medium. Attenuation — the falloff of a wave's energy with distance — has three main causes: (1) transmission loss at interfaces because of reflection, diffraction, mode conversion, and scattering (Bowman, 1955); (2) geometric divergence effects as waves spread out from a source; and (3) absorption, which is the conversion of kinetic energy into heat by friction (note that kinetic energy is the energy of motion). Writers do not always distinguish between the terms attenuation and absorption. Here, we refer to attenuation in the general sense of energy loss to any cause, and we use the term absorption in the special sense of energy loss to heat.

Transmission loss is a wave's energy loss as the wave travels through an interface. In transmission loss, the energy that is lost is diverted from the traveling wave of interest. There is no loss of total kinetic energy because the lost energy merely travels somewhere else. For example, when a wave meets an interface, some energy is reflected back from the interface, and only part of the wave's energy is transmitted though the interface.

Mode conversion is the conversion of P-wave energy into S-wave energy or vice versa. Mode conversion occurs when a wave arrives at an interface at an obliquely incident angle to that interface. Converted waves divert energy away from the given wave.

The energy of a wave in a homogeneous material is proportional

You do not currently have access to this article.

Figures & Tables

Contents

Society of Exploration Geophysicists Geophysical References Series

Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing

Enders A. Robinson
Enders A. Robinson
Search for other works by this author on:
Sven Treitel
Sven Treitel
Search for other works by this author on:
Society of Exploration Geophysicists
Volume
15
ISBN electronic:
9781560801610
Publication date:
January 01, 2008

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal