Skip to Main Content
Book Chapter

Microbes and Supergene Deposits: From Formation to Exploitation

Corale L. Brierley
Corale L. Brierley
Search for other works by this author on:
January 01, 2009


Microorganisms may have played two important roles in the formation of supergene deposits: weathering and enrichment. The bacteria and archaea, which catalyze the oxidation of sulfide minerals, likely had some function in mobilizing metals associated with primary sulfide minerals. Ferric iron (Fe3+), a product of microbial ferrous iron oxidation, is a potent oxidant for sulfide minerals, and sulfuric acid, a product of microbial sulfur oxidation, is a lixiviant for metal ion transport. Extremely thermophilic archaea—primitive, single-celled microbes—are particularly adept at leaching chalcopyrite. Oxidation of disulfide minerals (e.g., pyrite) by Fe3+ produces intermediary thiosulfate (S2O32−), which complexes with gold.

In the enrichment zone of the supergene environment, a diversity of microbes may have served to form secondary copper sulfide minerals, framboidal sphalerite or, possibly, gold nanoparticles. The metabolic strategies employed by these subsurface microbes include the following: sulfate-reduction with subsequent precipitation of metal sulfides, adsorption of metals to cell walls and absorption of metals into cells with subsequent metal reduction, and dissimilatory metal reduction involving microbes that oxidize organic compounds or H2 and use soluble metal ions (e.g., Fe3+) or solid minerals such hematite or goethite as terminal electron acceptors. The actions of these microbes can transform metals on a geologic scale.

Bacteria and archaea that facilitate the oxidation of sulfide minerals are employed in engineered biomining processes to commercially exploit the supergene deposits that these same organisms may have had a role in forming. Copper is leached from marginal-grade, sulfidic ores in dump leach operations and from highergrade, crushed ores on engineered pads in a heap bioleach process. Bacteria are used in aerated, stirred-tank reactors to enhance the extraction of gold that is occluded in sulfide mineral concentrates (sulfidic-refractory gold). Ores of these same sulfidic-refractory precious metals are crushed, inoculated with bacteria and hyperthermophilic archaea, and leached in engineered heaps. The extremophilic archaea are adept at leaching chalcopyrite, which is particularly refractory to ambient temperature leaching with Fe3+. Heap bioleaching of lowgrade, coarsely crushed chalcopyrite ore using thermophilic bacteria and archaea is under development. Lessons learned from decades of biomining have provided perspectives on the role microbes may have played in the supergene environment.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables


Special Publications of the Society of Economic Geologists

Supergene Environments, Processes, and Products

Spencer R. Titley
Spencer R. Titley
Search for other works by this author on:
Society of Economic Geologists
ISBN electronic:
Publication date:
January 01, 2009




A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now