Skip to Main Content
Book Chapter

Characteristic wavelengths in VGP trajectories from magnetostratigraphic data of the Early Cretaceous Serra Geral lava piles, southern Brazil

By
George Caminha-Maciel
George Caminha-Maciel
Present address: Universidade Federal do Pampa, Caçapava do Sul, RS, BrazilDepartment of Geophysics, University of São Paulo, São Paulo, SP, Brazil
Search for other works by this author on:
Marcia Ernesto
Marcia Ernesto
Department of Geophysics, University of São Paulo, São Paulo, SP, Brazil
Search for other works by this author on:
Published:
January 01, 2013

Abstract

The virtual geomagnetic pole (VGP) trajectories during some geomagnetic polarity reversals of different ages are marked by anisotropic behaviour. This recurrent phenomenon may be reflected in the paleomagnetic data, even if the transitional field was not completely recorded. As the long-scale geomagnetic variations have a confined oscillatory character, the VGP paths from stratigraphically controlled sequences may be described on the basis of sine and cosine functions, even if time is not the independent variable. Here we considered longitude (or space) as the independent variable which had to be ‘unrolled’ to overcome the 360° repetitions as the VGPs moved around the geographic pole.

Sixteen VGP series from the Early Cretaceous Serra Geral lava flows of southern Brazil were analysed using a modified version of the periodogram for uneven data series, and a combination of information approach. The combination of all the spectra, as in a stacking procedure, reduces noise and results in a smooth curve highlighting features of interest. We found a set of highest correlation wavelengths of approximately 167, 190, 209, 257, 277 and 368°. Phase analyses using two different methods revealed strikingly good coherence for some of these wavelengths, indicating that they are not only artefacts of the spectral analysis. Similar analysis of magnetostratigraphic data from the Icelandic Magmatic Province indicated that the two datasets may have wavelengths of approximately 165 and 270° in common. These results suggest quasi-periodic behaviour, possibly with sub-harmonic instabilities owing to the modulating effect of inner Earth’s anisotropies influencing the pole trajectory.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

Geological Society, London, Special Publications

Magnetic Methods and the Timing of Geological Processes

L. Jovane
L. Jovane
Universidade de Saão Paulo, Brazil
Search for other works by this author on:
E. Herrero-Bervera
E. Herrero-Bervera
University of Hawaii at Manoa, USA
Search for other works by this author on:
L.A. Hinnov
L.A. Hinnov
Johns Hopkins University, USA
Search for other works by this author on:
B. Housen
B. Housen
Western Washington University, USA
Search for other works by this author on:
Geological Society of London
Volume
373
ISBN electronic:
9781862396364
Publication date:
January 01, 2013

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal